US009130745B2

a2 United States Patent

(10) Patent No.: US 9,130,745 B2

Itoh et al. 45) Date of Patent: Sep. 8, 2015
(54) ENCRYPTION PROCESSING DEVICE AND (56) References Cited
METHOD
U.S. PATENT DOCUMENTS
(71) Applicant: FUJITSU LIMITEDS Kawasaki-ShiS 5,675’653 A 3k 10/1997 Nelson’ Jr' 380/28
Kanagawa (JP) 5,982,900 A * 11/1999 Ebiharaetal. .. v 380/30
6,839,847 B1* 1/2005 Ohkietal. . 713/194
(72) Inventors: Kouichi Itoh, Kawasaki (JP); Dai 7,065,788 B2* 6/2006 Yajima etal. . 726/23
Yamamoto, Kawasaki (JP); Masahiko 8,265,266 B2* 9/2012 Cietetal. ..o 380/28
Takenaka, Kawasaki (JP) (Continued)
(73) Assignee: Fujitsu Limited, Kawasaki (JP) FOREIGN PATENT DOCUMENTS
3k
(*) Notice: Subject to any disclaimer, the term of this gﬁ gg%gé; gll ggggg
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 302 days. onue
(b) by 302 days OTHER PUBLICATIONS
(21) Appl. No.: 13/927,634 Messerges, T. S. Dabbish, E. A. Sloan, R. H. “Power Analysis Attacks
of Modular Exponentiation in Smartcards.” CHES’99. pp. 144-157,
(22) Filed: Jun. 26,2013 1999 *
(Continued)
(65) Prior Publication Data
/ Primary Examiner — Mohammad [. Rahman
US 2013/0287209 Al Oct. 31, 2013 (74) Attorney, Agent, or Firm — Staas & Halsey LLP
57 ABSTRACT
Related U.S. Application Data A constant multiplier inputs a base and a modulo n, performs
. . o modular exponentiation modulo n with a prescribed constant
(63) Continuation of application No. PCT/JP2010/073636, as the exponent and with base a, and outputs the result of this
filed on Dec. 27, 2010. calculation as base b. A personal key converter inputs a per-
sonal key d and calculates a personal key d' as the quotient
(51) Int.CL when d is divided by the prescribed constant. A correction key
HO4L 29/06 (2006.01) generator generates a correction key d" as the remainder of
HO4L 9/08 (2006.01) the aforementioned division. A first modular exponentiation
HO4L 9/00 (2006.01) unit performs modular exponentiation base b with d' as the
HO4L 9/30 (2006.01) exponent. A second modular exponentiation unit performs
(52) U.S.CL modular exponentiation base a with d" as the exponent, and
CPC o HO4L 9/0869 (2013.01); HO4L 9/003 outputs a correction value. A correction calculation unit mul-
(2013.01); HO4L 9/3066 (2013.01) t%pl.les the. outputs of the first and second modulgr exponen-
(58) Field of Classification Search tiation units and outputs the result as the encryption process-

CPC ..o HO04L 9/003; HO4L 9/3066
See application file for complete search history.

3902 NEASURENENT
GONSTANT STORAGE 3903 PRIVATE KEY

ing result.

10 Claims, 51 Drawing Sheets

3900 ENCRYPTION

UNIT 3904 PRIVATE PROCESSING DEVICE
STORAGE UNIT kFy' GONVERTER

K

MEASURE Gk

CONSTANT PRIVATE

cla) KEY o~
:_51:

MODULAR

CONSTANT
an MULTIPLIER EXPONENTIATION

COMPUTING UNIT

27 (mod 1)

KEY o’

CORRECTION [:

il

MODULAR
EXPONENTIATION
| COMPUTING UNIT

US 9,130,745 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2002/0126838 Al* 9/2002 Shimboetal. 380/28
2002/0166057 Al* 11/2002 Kaminagaetal. 713/194
2003/0061498 Al 3/2003 Drexler et al.

2005/0185791 Al* 82005 Chenetal. ... 380/30

2008/0019508 Al*
2008/0144811 Al*
2009/0028323 Al*
2010/0232603 Al*
2011/0007894 Al
2011/0013770 Al

1/2008 Lipson
6/2008 Gopal et al. .
1/2009 Aciicmez et al.
9/2010 TItoh
1/2011 Takenaka et al.
1/2011 Ttoh

.. 380/30
.. 380/30
.. 380/28
............. 380/30

FOREIGN PATENT DOCUMENTS

JP 2000-132096 5/2000

JP 2003-233307 8/2003

WO 2009/118795 Al 10/2009

WO 2009/122461 Al 10/2009
OTHER PUBLICATIONS

Coron, JS. “Resistance against Differential Power Analysis for Ellip-
tic Curve Cryptosystems.” CHES’99. pp. 292-302, 1999.*

Japanese Office Action mailed Mar. 4, 2014 in corresponding Japa-
nese Application No. 2012-550616.

IEEE, “Standard Specifications for Public Key Cryptography”, IEEE
P1363/D13 (Draft Version 13), Nov. 12, 1999, pp. 1-73, http://grou-
per.ieee.org/groups/1363/P1363/draft. html.

Paul Kocher et al., “Differential Power Analysis”, Crypto’99, LNCS
1666, 1999, pp. 388-397.

Jean-Sébastien Coron et al., “Resistance Against Differential Power
Analysis for Elliptic Curve Cryptosystems”, Cryptographic Hard-
ware and Embedded Systems (CHES’99), LNCS 1717, 1999, pp.
292-302.

PCT International Search Report mailed Feb. 1, 2011 in correspond-
ing International Application No. PCT/JP2010/073636.

PCT International Preliminary Report on Patentability mailed Jul.
11, 2013 in corresponding International Application No. PCT/
JP2010/073636.

Kouichi Itoh et al.,, “Power Attack on Exponent Randomization
Countermeasure with Chosen Message Pair”, The Symposium on
Cryptography and Information Security (SCIS 2010), Jan. 19-22,
2010, pp. 1-6.

* cited by examiner

US 9,130,745 B2

Sheet 1 of 51

Sep. 8, 2015

U.S. Patent

I "©O14

0=0¢

V=0+V=V+20

0 INIOd JLINIANI

V¢ © INIOd 40 ONITEn0d

(¢ pouw).& : HNIYYNOS

g-FV © INIOd 40 NOTLOVH1danS

(U pow) gx& : NOISIAILQ

g+F © INIOd 40 NOILTddy

(U pouw)ygx e : NOILYOIdILINW

. (v pow) ,&
7o+ INIOd 40 NOLLVOTIJLLTN dvIvos NOILYLNdNOD NOILYILNINOAX3 ¥VINCON
994 ySy

US 9,130,745 B2

Sheet 2 of 51

X NOTLVIWHOANI
134948

¢ Ol 4

4 NOTLVIWHOANI
134038

Q4vO LHVNS

(@]

Anuuuu W=

/d 1X341 NIV1d

IZA7 ~/
VNV AMMMWV NOILONNS NOTLdA¥ONT

A8 SS3004d ONTYNd

Sep. 8, 2015

U.S. Patent

A

(3INNSNOD HIMOd FUNSVAN

US 9,130,745 B2

Sheet 3 of 51

Sep. 8, 2015

U.S. Patent

e 914

A
NOI1dAY¥ONS

AT

1 [

> - J T J9YSSIN LNANI
NOTLdAYDIA V1 LV NOILdAYO30 TV L4Vd Q0 Luvis B
N4SS09NSNN INIWTANSYIN ¥IN0d
3 ZAnassons || oo
[I [
JONRIA4TC J
SWHOJIAV

d3INod 40 ALTTTVHNTd ONOWY JONJY3441d NO d3SVE AdX NOILdAYONT 1dA¥93d
AIM NOT1dAYONT ANV VLIVA (3SS300dd NIIMLIE NOILYI1IHY0I 3SN
ANTVA VIVQ JAYISF0 ATLOFMIANT : (SISATYNY 4IMOd TYIINIYHIQ@ vda ()

NOILIA@Y 9nignoa: w.7_=~o~_mm NOILIQQY HNIT9n0a

WHO43AVM ¥3IMOd F71ONIS 40 OTLSIHLOVHVHO NO A3SYE AdX NOILdAYONA 1dAY¥O3d
A3M NOT1dAYONT ANV SINJLINOO SS300dd NIIMLIE NOITLVIIYH0D 3ISN
SINJINOD SS3F008d SIAYISA0 ATLOFYIA : (SISATYNY ¥IMOd I1dNIS) VdS) (B)

U.S. Patent Sep. 8, 2015 Sheet 4 of 51 US 9,130,745 B2

<INPUT VALUES)

d: SECRET KEY, DENOTED AS d=d[u-1]||---||d[1]]|d[0]
d[i] IS iTH BIT VALUE OF d

u: BIT LENGTH OF d

a: CIPHER TEXT

n: MODULUS

<OUTPUT VALUES>

v=a’ (mod n)

401 v:=1;
402 for(i:=u - 1; i 0; i:=i - 1) {
/* PERFORM SQUARING */
403 v = vxv (mod n);
/* PERFORM MULTIPLICATION IF /*d[i]=1
404 if (d[i] ==1) v = vxa (mod n);
405 }
406 return v;

FIG. 4

U.S. Patent Sep. 8, 2015 Sheet 5 of 51 US 9,130,745 B2

CALCULATION OF &7 (mod n) WITH BINARY METHOD
d=0 100 1 0 1),

MULTIPLICATION
SQUARING

FIG. S

US 9,130,745 B2

Sheet 6 of 51

Sep. 8, 2015

U.S. Patent

9 ©OI14d

0 SI P 40 dNIVA 119 :ONIYYNOS A'INO
I ST P 40 INTVA 118 NOILVOI'IAILINN + ONIYVNOS

A

NOILYOI'ld NOILYOI'ld
—1L1NW ONIYVNOS ONTUVNOS —1L1NW ONIUVYNOS \
e Y YT
€09 ¢09 109

U.S. Patent Sep. 8, 2015 Sheet 7 of 51 US 9,130,745 B2

<INPUT VALUES>

d: SCALAR VALUE

u: BIT LENGTH OF d

A POINT ON ELLIPTIC CURVE

<OUTPUT VALUES>

V=Da: POINT OBTAINED BY MULTIPLYING A BY d

701 V:=0; /% INITIAL VALUE IS INFINITE POINT */
702 for(i:=u- -; i 0; i:=i-1) {

/* PERFORM DOUBLING OF POINT */
703 V:= ECDBL (V)

/* PERFORM ADDITION OF POINT IF d[il=1 %/
704 if (d [i] ==1) V := ECADD(V, A);
705 }
706 return V;

FI1G. 7

US 9,130,745 B2

Sheet 8 of 51

Sep. 8, 2015

U.S. Patent

8 Il 4
INIOd 40 9HNI19n0d
INIOd 40 NOIl1ddy T S S A _
V(I (- 00202)2) 2) 2= P
Gy | ov : :

7 7 90ad vd €A ¢a 1a o0d

“001L001L 1) =p
QOHLIW AMYNIE HLIM ¥2 40 NOILVINDTVD

US 9,130,745 B2

Sheet 9 of 51

Sep. 8, 2015

U.S. Patent

6 ©OI14

0 SI 2 40 ANIVA 114 “ONI19N0d A'INO
I ST A 40 JMIVA 119 :NOILIQAQVY + ONI'1dnod

A

NOILlIdav ONI79n0d
— A

ONI18n0od

NOILlTddy

YT
€06

v
€06

YT
106

ONI1dnoa

US 9,130,745 B2

Sheet 10 of 51

Sep. 8, 2015

U.S. Patent

NYO43AVM LYT4 (9)

S4vaddv IMIdS (B)

Ol

‘014

A

103YHOONI ST [/1P 40 NOILOIA3Yd

(7) 4410

934400 ST [/1P 40 NOILOIQ3Yd

US 9,130,745 B2

Sheet 11 of 51

Sep. 8, 2015

U.S. Patent

d38WNN WOANVY HLIM Q37TV4ONOO ST ddMOd
ANY J9VSS3W NJ3IMLIE NOTLVIIY¥0D JONIS J1dISSOdNT ST MOVLILY Vdd

371 371
2 €1 _1yoN * N S + |4 “IKOONYY v
74 + mumm ;ﬂ

y

H wixx L0109 sook I I 5 R H v

1 NINVL STUNSYAN

Y3ANNN
HOANVY gLl ‘914

yo 4 f— .. t— ¢ 4
[0]p H

vl 1 11 Demew e |1 11 D-mp) yi-uip P 4 NDIVL SISV ON
(PO pgpp a1 PO - pirgp® PO proag® VIl 14

US 9,130,745 B2

Sheet 12 of 51

Sep. 8, 2015

U.S. Patent

L OI4

‘A se [0]2 uJdnidd /071
{ 9071
‘[[1IP]13 = [0]3 GOZL
/* [11p 40 INTVA 0L HNICY02OY [0]13F 01 17NSFY NOILYLINAWOD 1DIMH0D AdOD */
f(u pow) ex[0]% =2 [L13 ¥0Cl
/% [113 NI I=[!1]P 40 3SYD NI LINS3Y NOILYINdWOD JHOLS 'NOILVOITAILINW WHO4HAd */
f(uopow) [0]3x[0]3% =@ [0]3 €02l
/* [0]3 NI 0=[!1]p 40 3SVD NI LINS3Y NOILYLNdWOD JHOLS @z_m<:ow zmcmmmm */
| G E b 1 B 1)40} 2021
._u.ﬁogy 1021

(113 ‘[0]1%
4344ng>
(U pow) ,e=A
<SINTYA LNdLNO>
SNINAON :u
Isvg e
P 40 HLHN3T LIg :n
P 40 INTIVA LI9 HL! SI [11p
oIl | LLIP|]-=-[1[} - nlp=p SY Q3LON3Q ‘AN 1F¥D3S :P
<SINTVA LNdNI>
Ac .U .S w>m>>_mm_<IQXm_bo_>_

US 9,130,745 B2

Sheet 13 of 51

Sep. 8, 2015

U.S. Patent

—

JOV1S ANOJ3S

>

el

Or 4

J9V1S 1SYI4

>

N

N

|=[X]P 41 Y3IGNNN Q40 40 NOILYOITdILINW O
ANTVA "0=[x]p 41 ¥3IGNNN NIAT 40 NOILIVOITdILINW 40 INTVA :19003/HNINVNOS 01 LNdNI

438NN
aao 40
NOILYdIl'ld
=[1INW
197138

1nS3y
NO11VLNdWOod

[0]3

I=[0]p
— 2(0))°

4

(Qavod)
NOILYDI'ld
=[LINNW

D=[0]P 4
~] n
(001

d39WNN N3A3 40
NOTLVOI1dILINW

Auwuﬁ__v

439NNN Qao 40

NOTLVOI1dILINW

AH__HE p
I=[Z]p

IREREN I=[1p 0 153138 .
[1]3 A||N::* [113)
(avo3)
€0 (19007) |03 NOLLYOI1d[*=0| (18003 Iefoamas
ONIYYIOS o=(13p| —LLTOW 0=[71p
4 -y
T Ne—— 7 013

¢

“(101)=P 40 3SY9 NI ITdW¥X3 NOILYLNdWOD

US 9,130,745 B2

Sheet 14 of 51

Sep. 8, 2015

U.S. Patent

1L ©OI14d

A

—
I

(Qavo3d) (190039) (Qavo3d) (190039) (aavod) (19@039)
NOILYOIld ONIYVNOS NOILVOITd ONIWVNOS NOILVOITd ONIYVNOS
=ILINN =ILINN =ILINN

(3INJAJYd 39 NYO VdS "2 40 SSI1QYvHIY ¥vIN9H3I¥ IN0O3d
(Qav¥03) NOILVOITdILTINW ANV (719@03) HNIYYNOS 40 NY3LLVd JONIS

US 9,130,745 B2

Sheet 15 of 51

Sep. 8, 2015

U.S. Patent

GL '©OI14

‘A se [0]1 uanied [0GI
{ 9051
‘[L1IP1L =:[01L GOG1
/% [11p 40 INTVA OL HNIQY0DOY [0]11 01 17nS3FY NOITIVINAWOD NOT1D3FYH0D AdOD */

(([111 "[oll)aaydo3=: [o]l v0G1
/#(CIIL NI [=[!]1p 40 3SV¥O NI L7NS3Y NOILYLINAWOO FH0LS) INIOd 40 NOILIGQY WHOJ¥Id */

:([0]1)19003=: [0]l €09l

/% [0JL NI 0=[!1p 40 3S¥O NI LINSIY NOILYLINAWOO F¥OLS) INIOd 40 HNITENOA WYOJ¥Id */
Jao- =ttt e |- n=11) Jod 2061
/* INIOd JLINIANI =/ :0=:A 10SI

(L]l ‘[o]l
<4344ng>
Yp=A
<SINTVA LndLNo>
JANND D1LdIT13 NO INIOd :V
P 40 HIONIT LIg :n
ANTIVA 119 HL! ST [11p
[oIp| | LLIP||---1 | [- NIp=p SY QALONAQ ‘AIN L13I¥93AS :p
<SINTVA 1NdNTY
(Y 'P)sAem|eqy” |nWIulod

US 9,130,745 B2

Sheet 16 of 51

Sep. 8, 2015

U.S. Patent

9L '©O1T14

‘A uJniaJ 09l
tU Tp ‘e)sAem|eqy dxJpop =: A €091
/* (QOHLIW sAem|e—Qq3y HNISN NOILYLNAWOO NOILYILNINOAXI dVINAON */
[43g + p = .Ip 209!
: (4IINNN WOANVY L19-02) =: T4 1091

(u pow) ,e=A

<SANTVA 1nd1no>
43040 3t
SNINAOW :u
Isvg e
P 40 HIONAT LI9 :n
P 40 INTYA LI9 HL! SI [!1p
Lolp| | CLIe||==+|][k - nIp=p SY QILONIA 'AIN 13403IS P : P
<SANTVA 1NdNI>
(3 ‘U ‘p ‘e)sAem|eqy pue NNy dx3pol

U.S. Patent Sep. 8, 2015 Sheet 17 of 51 US 9,130,745 B2

ModExp_RDIV_and_ADalways (a, d, n)

<INPUT VALUES>

d: SECRET KEY. DENOTED AS d=d[u - 11||---||d[1]]]d[0]
dli] IS iTH BIT VALUE OF d

u: BIT LENGTH OF d

a: BASE

n: MODULUS

#E: ORDER

<OUTPUT VALUES>

v=a® (mod n)

1701 rj := (20-BIT RANDOM NUMBER) :

1702 dj’ :=d /rj;
1703 e’ :=d (mod rJ);

/* MODULAR EXPONENTIATION USING A&D-always METHOD */
1704 a’ := ModExp_ADalways(a, rj, n);

/* MODULAR EXPONENTIATION USING A&D-always METHOD */
1705 t = ModExp_ADalways(a’ , dj’ , n);

/* MODULAR EXPONENTIATION USING A&D-always METHOD */
1706 u := ModExp_ADalways(a, ej’ , n);
1707 v = tu (mod n)
1708 return v,

FI1G. 17

U.S. Patent Sep. 8, 2015 Sheet 18 of 51 US 9,130,745 B2

PointMul_RMUL_and_ADalways (a, d, n, #E)

<INPUT VALUES>

d: SECRET KEY. DENOTED AS d=d[u - 11|]|---||d[1]]|d[0]
d[i] IS iTH BIT VALUE OF d

u: BIT LENGTH OF d

A: POINT ON ELLIPTIC CURVE

#E: ORDER

<OUTPUT VALUES>

V= dA

1801 rj := (20-BIT RANDOM NUMBER) ;
1802 dj° :=d + #Er]
/* SCALAR MULTIPLICATION USING A&D-always METHODx/
1803 V = PointMul_ADalways (A, dj");
1804 return V;

FIG. 18

U.S. Patent Sep. 8, 2015 Sheet 19 of 51 US 9,130,745 B2

PointMul_RDIV_and_ADalways (a, d, n)

<INPUT VALUES>

d: SECRET KEY. DENOTED AS d=d[u - 11||---||d[1]]]|d[0]
dli] IS iTH BIT VALUE OF d

u: BIT LENGTH OF d

A: POINT ON ELLIPTIC CURVE

#E: ORDER
<OUTPUT VALUES>
V= dA
1901 rj = (20-BIT RANDOM NUMBER) ;
1902 dj° :=d /rj;
1903 ej° :=d (mod rj);
/* SCALAR MULTIPLICATION USING A&D-always METHOD */
1904 A’ = PointMul_ADalways (A, rj);

/* SCALAR MULTIPLICATION USING A&D-always METHOD */
1905 T := PointMul_ADalways (A" , dj’);

/% SCALAR MULTIPLICATION USING A&D-always METHOD */
1906 U := PointMul_ADalways(A, ej’);
1907 V = T+U;
1908 return V;

FIG. 19

U.S. Patent Sep. 8, 2015 Sheet 20 of 51 US 9,130,745 B2

I 4 | 4
A
3x4 W’
— g | — g
DIFFERENGE DIFFERENCE

‘]

FIG. 20A FIG. 20B

U.S. Patent Sep. 8, 2015

A\ 4

FIG. 21A

Sheet 21 of 51 US 9,130,745 B2

+2A

v

FIG. 21B

US 9,130,745 B2

Sheet 22 of 51

Sep. 8, 2015

U.S. Patent

<2 O14

| WYO43AVM
TVILINGY3441d

4

W pow)

40 WYO43IAVM
d3Mod

W pow)
40 WYO43IAVM
d3Mod

US 9,130,745 B2

Sheet 23 of 51

Sep. 8, 2015

U.S. Patent

€¢ 914

H1dS!
0= 0L I Vo3 3

LV14 {3914 3M1dS! IIdS! LvT4 |

W04IAVM

4

VILINAY3441d

¥ SINJINOO NOTLVLAdWOD

W pow) 0
40 WHO43AVM dIMOd

W pow) of
40 WY043AVM d3Mod

N3AID RV 0+

‘W opow) Bz [="(111)0 NIHM WHOJIAVM TVIINIWIAA1Q 40 ITdAVX3

U.S. Patent Sep. 8, 2015 Sheet 24 of 51 US 9,130,745 B2

VALUE OF VALUE OF VALUE OF
dlu-111/--1ld[u-i+1] dlu-i] | dlu-17]]---]]dlu=i+1]]]d[u-i]
MULTIPLE OF 3 (34) 0 R MULTIPLE OF 3 (64)

NON-MULTIPLE OF 3 (B4+1)
NON-MULTIPLE OF 3 (3A+1) ... NON-MULTIPLE OF 3 (64+2)

|
0
! 1 MULTIPLE OF 3 (64+3)
0
|

NON-MULTIPLE OF 3 (34+2): r NON-MULTIPLE OF 3 (64+4)
Lo NON-MULTIPLE OF 3 _(6.4+5).

FIG. 24

US 9,130,745 B2

Sheet 25 of 51

Sep. 8, 2015

U.S. Patent

Gc 9O14

*

OO O O DT OO
MIdS IS M1ds 1V

cpou/ L+/-njp | ||| [1-n]
0=//-nJp

0 L 0 0 | *

ATIVNOILIANOD r----- 1
@INIWY3LIA INTYA LI9 L----- i (INIWY413a InvA 114

=L np N L P

=[1-njp /
WYHDY 1A NOTLISNVAL ——X
40 NOTLVINISTHAIY L=L1-1p A
\=[1-n]p
@ra-my foje |1 e |11 [2-nip || [1-njp=p

0=//-njp

IVId 3)M1dS INIdS

£ 40 SANVA 119 318V1dAd03d
“WHO43AVM TVILN3Y3441a NO
@3Sva F19VAYASA0 NOILVINHOANI

ATIVNOILIANOONN

\=(1-n]p

US 9,130,745 B2

Sheet 26 of 51

Sep. 8, 2015

U.S. Patent

999

999

MI3

999

dPOVLLY
A4 (3A44S90
NOTLYWHOANI

0 0

0 41VIS NI
ONIL14V1S NY311vd

9¢

)

MMD

999

999

dIOVLLY
A9 (3A43S40
NOT1YWHOANI

o1I14

319Y1dAN03a ST SANTVA 119 40 11V 40 ¢l/L <
SNY311Vd 21 40 TIV ONOWY A3¥ 1dA¥O3IA ATINOINN NVO SNYIL1vd L -
031dA¥93Q AT3INOINN
39 NVO NOILYWYOANI 119 A3¥ ‘Q3141IN3AI AT3NOINN 39 NVO INTYA LI19 HOIHM HLIM SNY3LlVd JdY
dDIOVLLV A9 (JA44SE0 49 NVO LVHL NOILVAYOANI ONOWY 999 NYHL 44H1O SNY4LLvVd L 40 TIV AONIS -

A ARCD

WD
ﬁ_\@w@
DR

0 0
| 41VIS NI
ONI1dV1IS NY3Ll1vd

MOM

JIM

OMM

MMM

dDIOVLLY
A9 (3A43S490
NOT1VIWHOANI

0 0
0 41V1IS NI
ONI1YV1S Ny3Llvd

US 9,130,745 B2

Sheet 27 of 51

Sep. 8, 2015

U.S. Patent

L¢c D14

I 0 0 |

|

O
O — —

SLI9 AINEH M D - INIL Hlv
SLI9 AINEDH D M- JNIL QY€
SLI9 AMEH D D - JNIL ANC
SLI9 A<M D D - JNIL ISI

S1INS3d NOIL1dAY¥Odd

o
—

JE S N

(414THS ONT49 A4
1437 0L 1HOTH WOY4 ATIVILININOAS
SNJd11vd € 40 SLINN NI avad

O
O

ONIYLS 119
AIN Ad1dAd403d

AN TVILYvd
118-¢ 0d3414A404d

dINOVLLY A4

 Q3IA¥3SE0 SNYILLYd

US 9,130,745 B2

Sheet 28 of 51

Sep. 8, 2015

U.S. Patent

8¢ 9OI4

JNIL HL(1+d) LY
O]| Q31dAYO3A AN IVILYVd L19-¢

-

._<:om_,,H JNIL HL(1+d) LY NOILdAYO3Q A3N TVILYvd
INIL HL(1-9) IV NOILdAY93Q ATM WILYVd ... x. IN4SSIOONS A9 GINIWYTL3A -119 43Q40-HOIH
TIESSI0US A6 GNNEILA 118 SH001 o o NIL Hid 1V Q31dAd03Q AN TVI1dvd 118-¢
woa ¥
I JNIL HL(1-d) 1V
| L0 ; (31dA4O3A A3 IVILYVd L18-¢

US 9,130,745 B2

Sheet 29 of 51

Sep. 8, 2015

U.S. Patent

31dv1dA423d

62 OIA4

G/1 40 ALITIGVE0dd HL1IM
319V1dA¥03A = SNY3L1LYd O1/SNY3L1Vd ¢

318V1dA404d

10N

US 9,130,745 B2

Sheet 30 of 51

Sep. 8, 2015

U.S. Patent

379Y1dA¥03Q = SNY3LLYd 0)/SNYILLYd ¢

378V 1dA4940

0O€ 'OT1H4

G/1 40 ALITIAVE04d HLIM

3718V1dA493d

10N

U.S. Patent Sep. 8, 2015 Sheet 31 of 51 US 9,130,745 B2

VALUE OF VALUE OF VALUE OF
dlu-1]/[+-/ldlu-i+1] dlu-i] | dlu-1]/]---/]dlu-i+1]]]d[u-i]
MULTIPLE OF o (o 4) o MULTIPLE OF o Qo k)

1 i NON-MULTIPLE OF o (o k+1) |

NON-MULTIPLE OF @ i 0 ! NON-MULTIPLE OF o« (« /(+oz—1)§
(ak+(a-1)/2) {1 MULTIPLE OF o (arhra) !
NON-MULTIPLE OF @ { 0 NON-MULTIPLE OF o (a A+2a-2)

___________] 1 L NON-MULTIPLE OF o (o A2 v 1)

FI1G. 31

U.S. Patent Sep. 8, 2015 Sheet 32 of 51 US 9,130,745 B2

RATIO OF PRIVATE KEY BITS
VALUE OF RATIO.

3 2/3

PRINE NUMBER EQUAL TO OR

LARGER THAN 5 3/2a)

FIG. 32

US 9,130,745 B2

Sheet 33 of 51

Sep. 8, 2015

U.S. Patent

O ONY d H109 ¥04
HOLVIN 01 Q344N SA3M
A1VATYd d3ZTINOANVY

SWHO43AVM
TVILINAY3441d

W pow) 0

40 SWHO43AVM

d3Mod

V/

[

4

W pouw) xad
40 SWYO43IAVM
43Mod

[ORIR
‘O1I4

gc¢€
‘Or1 4

vee
oI4d

US 9,130,745 B2

Sheet 34 of 51

Sep. 8, 2015

U.S. Patent

e 'OI14

SENENEEE] (I

-~

(U pow) Ax 40
NOILV1INdWOO LV VY1va

WJ043AVM INJWIINSVIN
43N0 (U pow) (X

e —
¥ pou 0 (w powy 0| [pow) 0
(V»%%%%Al'llll 7|NA\L/ 0 0 0 LNdNI
Dt T 4= EEE) (N
BONRIAAIQ "= ey | JONFIL41
3_8___:* (@50 4] d IndNI

US 9,130,745 B2

Sheet 35 of 51

Sep. 8, 2015

U.S. Patent

(43GWNN WOANVY 118-¢ 40 ISYO NI HOLYW SLIE 0¢ HNILYYLS AINO)

MV3d SYH SAVMTY HOLVASIN SLIE AdX NIHM INIOd JWIL ¥314V ANV LV WHOJJAVM TIVIINIY3441d

~01010L01001011010L1LO1LOOLOLOLOOLOLOIOOLLOLLOLLLIOLOLLLLELQOLOL

HOLVN SLIE ¥ ONILHVLS ATINO

" 1000001 100001010100 10000} 11001000100100L00L01L00100LOL00IQLOL

P

o

JYON ¥O (INIOd 40 NOILYOITAILTINW ¥VT¥OS)3!19-091/ (NOILVILININOAXI ¥VINAOW) 3!9-+20!)

434410 SA3IM J1VAIYd A4ZTINOANVY 4l

ga6e€ 9OI1-4

AIM 3HL 40 SANIVA 118 OL ONIQY0IV Lv'1d SW003E SLIE TIV OL ONIANOASIHHY0O WHOJ3AVM TIVILINIY3441d

oA AAAAAN A

"++-1000001} 1O0001010L0010O000L 1100L000100100L00LOLOOIO0LOLOOLELOL
~---1000001 100001010 100100001 1 1001000100100L001L010010010100L 1101

HOLYW SLIE TV

=
o

40N HO (INIOd 40 NOILYOITILTINW ¥vVI¥0S)319-091/ (NOILVILINANOAXI ¥YINAOW) 3!9-+20!

VND3 J4Y SAIN JLVAIYd A3ZINOANVY 4l

vég OI1-4

US 9,130,745 B2

Sheet 36 of 51

Sep. 8, 2015

U.S. Patent

SJONF44441d ANVIN 40

ONIHOLVIN HLIM SJWIL ,,¢% ¢ Ol

SINAWFUNSYAN H3MOd J9Nnddd

(u pouy X

40 NOI1V1NdWOd
1V V1V WHO43JAVM

INJWFANSYIN HAMOd -

(¢ pouw) X

9¢ 'O1T1-4

SIINFYIHAIA 2

>

—

N

AQ UOEV . QQQEQ

_ AQ UOEv ,%m%\hQ T AQ UOEV \SQ%Q

[

SIINFHI4IQ 4,2

0 1NdNI

d INdNI

U.S. Patent Sep. 8, 2015 Sheet 37 of 51 US 9,130,745 B2

3705
COMMUNICATION ENCRYPTION
1/F PROCESSING DEVICE

COMMUNICATION CPU y
CIRCUIT \3704 \3701 66 | 707

[

3706 .\

GND
ROM RAM
37027 3703/

~—3708

3700

FIG. 37

U.S. Patent Sep. 8, 2015 Sheet 38 of 51 US 9,130,745 B2

3705
A\

ENCRYPTION
COMMUNICGATION 1/F PROCESSING DEVICE

COMMUNICATION //3704
CIRGUIT

3711
ECC HARDWARE | /~
CIRCUIT Voo | 3707

o

3706 LN

GND
RAM
3703—/,

~—3708

FIG. 38

US 9,130,745 B2

Sheet 39 of 51

Sep. 8, 2015

U.S. Patent

6 OI4

906¢€
<

.......................... 2

LINN ONILNdNOD

NOIL1VIININOdXd
dvIinaon

. P AT
NOT 1334409

LINN ONILNdWOD
NOTLVIININOdX3
4V INQON

ETRFTURG]

INV1SNOD

e smxu
LVATN VAT INYLSNOD
: : BV

> WEALENO AD |10 JovaoLs w_z=

391A30 HNISSIV0Ud JIVAIYd 1068
NOILdAYON 0068 A} JLVATYd €06€

J9VH0LS INVLISNOD
INJWFANSYIN C06€

US 9,130,745 B2

Sheet 40 of 51

Sep. 8, 2015

U.S. Patent

WHO043AVM

CAAWAS AW AV AAA AW AAA——

<

VILINGY43441d

W W WV WV e 1y

W pow) p(sl)
40 WYO4JAVM HAMOd

050 ;@) D0 @) | HxL gl

od () dd @) ¥l ol
R

W pow) »(ad)
40 WYO43JAVM HAMOd

WND3 3AVN ST (W POWH=af)0 d 40 LNdNI
1V 4SVE JONIS LV'1d SJN0O49 SAVMIV WY04dAVM

O00v 914

a0v 914

vVOov ©914

US 9,130,745 B2

Sheet 41 of 51

Sep. 8, 2015

U.S. Patent

VP

Il ¥ "©O1 4

. 40 ¥311dILNW
4V VIS

I's

NOT 1944409

INIOd

40 ¥3T1dTLINN
dvivos

AL AN
41VATYd

P AN

11VATYd

ONIAdILINW
INVLSNOD

(P)9 INVLSNOD
4NSV3IN

L Z T T

J01A30 ONISS3004d
NOILdAYONT 00lY

43143ANOD
AIM J1VALIYd ¥0Ly

7

J

LINN JOVHOLS
AN J1VATHd €0LY

LINN
J9V401S LINVLSNOD
ININIENSYIN 201V

U.S. Patent Sep. 8, 2015 Sheet 42 of 51 US 9,130,745 B2

42001 (PRELIMINARY PROCESS)

4201 | INPUTTING a and n |

CALCULATING d’ =(QUOTIENT OF
4202 |d=C(a)) AND d” (REMAINDER
OF d=C(a))

v

4203 | CALCULATING b=a®“ (mod n)
v

4204 | CALCULATING t=(b)? (mod n)
v

4205 | CALCULATING u=a?" (mod n)
v

4206 | CALCULATING v=txu (mod n)
v

4207 | OUTPUTTING v=a® (mod n)

FIG. 42

U.S. Patent Sep. 8, 2015 Sheet 43 of 51 US 9,130,745 B2

INPUTTING U-BIT EXPONENT d=d[u-1] || --- ||

4300 d[0] (d[i]:1- BIT VALUE)
BASE a, AND MODULUS n
v
4301 | tlo] lé 1|
4302 [T eu-1 |

»

4303 [t[0] < t[0] xt[0] (mod n)]

4304 [t[1] < t[0] xa (mod) |

|
4305 | t[0] < tld[i]] |
!
4306 | < i1 |
4307
YyE€S
4308 | v € t[0] |
'
OUTPUTTING v, AND ENDING
4309 [PROCESS J

FIG. 43

U.S. Patent Sep. 8, 2015 Sheet 44 of 51 US 9,130,745 B2

INPUTTING U-BIT EXPONENT d=d[u-11 [| - [|
4400 d[0] (d[il:1- BIT VALUE)
BASE a, AND MODULUS n. u=kxL

oo e ;
i 4401 [w0l €1 | :

4402 | i <1 |

>

4403 ['w [i] « wli-T1xa (mod n) | | TABLE DATA

v : 1= i
4ot | e | GENERATING (i) = al (nod)
4405

E(i:()’1’ 2k—1)

4406 | €L -1 |
I
4407 [t € Wl Gixk+ k-1 [- [] GxR+1]] (xK 1]

4408 REPEATING FOLLOWING PROGESS BY k
TIMES t € t xt (mod n)

4409
|t & txwl (ixk+k-1D || || (ixk+[] (ixk 1 (mod n)

|

4410 | e
4411
YES

COMPUTATION LOOP
USING TABLE DATA wli]

4412 |

4413 | OUTPUTTING v, AND ENDING
PROCESS

FIG. 44

U.S. Patent

Sep. 8, 2015 Sheet 45 of 51

US 9,130,745 B2

4500

4201 | INPUTTING a AND n |

A 4

4203 | CALCULATING b=a® (mod n)
¥
4204 | CALCULATING t=b)¢ (mod n)
¥
4205 | CALCULATING u=a® (mod n)
4206 Y
CALCULATING v=txu (mod n)
7
4207 (" QUTPUTTING v=a’ (mod n))

FIG. 45

U.S. Patent

Sep. 8, 2015 Sheet 46 of 51

US 9,130,745 B2

4200 | GENERATING -d:-(PRELIMINARY: PROCESS)

4201 [_INPUTTING a AND n |
v

4601

4602

4603

4604

4204

4205

4206
4207

GENERATING 20-BIT RANDOM
NUMBER r

v

CALCULATING r’ =C(a) Xr

v

CALCULATING d” =(QUOTIENT
OF d=r”) AND
d” =(REMAINDER OF d=r’)

!

CALCULATING b=a" (mod n)

v

CALCULATING t=b% (mod n)

v

CALCULATING u=a?" (mod n)

v

CALCULATING v=txu (mod n)

v

[QUTPUTTING v=a® (mod n) |

FIG. 46

US 9,130,745 B2

U.S. Patent Sep. 8, 2015 Sheet 47 of 51
= (PRELTMINARY PROCESS):::
4701 | INPUTTING A |
v
CALCULATING d’ =(QUOTIENT
4702 OF d=C(a)) AND
d” =(REMAINDER OF d=C(w))
v
4703 CALCULATING B=C(cr) A
v
4704 CALCULATING T =d’ B
v
4705 CALCULATING U =d 7 A
v
4706 CALCULATING V = T+U
v
407 (OUTPUTTING V=dA

FIG. 47

U.S. Patent Sep. 8, 2015 Sheet 48 of 51 US 9,130,745 B2

INPUTTING U-BIT PRIVATE KEY d=d[u-11 || --- ||

4300 d[0] (d[il: 1-BIT VALUE), AND POINT A

v

4801 T[0] € 1
v

4802 i cu -

4803 T[0] & 2T[0]
v

4304 T[] < T[0] + A
v

4305 T[0] < T[d[i]1]
v

4806 e

4807

i>07?
YyE€Ss
no

4808 V< 700

v
OUTPUTTING V AND ENDING
4809 [PROCESS]

FIG. 48

U.S. Patent Sep. 8, 2015 Sheet 49 of 51 US 9,130,745 B2

INPUTTING U-BIT EXPONENT d=d[u-11 || - ||

4900 d[0] (d[il: 1-BIT VALUE), AND BASE a
u=k x L
----------------------------------- T
4901 w([0] €0
Il
4902 i
:l E
4903 w [i] € wli-1]+A § TABLE DATA
4904 . *, § GENERATING
i € i+ 1 i wlil = iA
4905

{(i=0,1, -, 2%1)

4906 i <L -
; v
14907 | T e wl Gixk+k =D] =[] Gx+]] Gixk)]

»
P

A 4
4908 REPEATING FOLLOWING PROCESS BY k TIMES

T « 2T
4909
TE€T+wl (ixk+k-1) || - || Gxk+1]] (ixk)]
v
4910 i< i-1

4911 COMPUTATION
Ves LOOP USING TABLE
O DATA WLl
4912 VT

v
4913 (" ouTPUTTING T AND ENDING PROCESS |

FIG. 49

U.S. Patent Sep. 8, 2015 Sheet 50 of 51 US 9,130,745 B2

5000 |

4701 | INPUTTING A)

v

4703 | CALCULATING B=C(w&) A
v
4704 | CALCULATING T=d’" B
v

4705 | CALCULATING U=d" = A
v

4706 | CALCULATING V =T + U

v
4707 ([QUTPUTTING V = dA |

FIG. 50

U.S. Patent Sep. 8, 2015 Sheet 51 of 51 US 9,130,745 B2

4700 (PRELIMINARYPROCESS

4701 [INPUTTING A |
v
5101 | GENERATING 20-BIT RANDOM NUMBER r
v

5102 | CALCULATING r’ =C(a) Xr
v
CALCULATING d’ =(QUOTIENT OF
5103 |d=C(a)) AND d” =(REMAINDER
OF d=C(a))
!
5104 CALCULATING B=r’ A
!
4704 CALCULATING T=d’ B
!
4705 CALCULATING U=d” A
!
4706 CALCULATING V=T+U
, !
407 OUTPUTTING V=dA

FIG. 51

US 9,130,745 B2

1
ENCRYPTION PROCESSING DEVICE AND
METHOD

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation application of Interna-
tional Application PCT/JP2010/073636 filed on Dec. 27,
2010 and designated the U.S., the entire contents of which are
incorporated herein by reference.

FIELD

The embodiments discussed herein are related to an
encryption processing device and method, which improve
tamper-proofness in an encryption process.

BACKGROUND

In recent years, the importance of information security
technologies has been increasing. Moreover, public-key
cryptography has been actively studied as one of fundamental
techniques of information security.

Public-key cryptography includes several types. Algo-
rithms such as Rivest, Shamir, Adleman (RSA), and Ditfie-
Hellman (DH), which use a modular exponentiation compu-
tation, elliptical curve cryptography (ECC) using a scalar
multiplication of a point on an elliptic curve, and the like are
known.

Inuse of public-key cryptography, it is important to keep a
private key secret in order to retain security. In recent years,
however, several attack methods for decrypting (or breaking)
a private key have been known. Accordingly, for tamper-
proofness of a device for executing a process using public-key
cryptography, the device needs to take at least measures
against known attack methods.

For example, an attack method called a power analysis
(PA) attack is known as one type of side-channel attacks.
Moreover, PAs include two types such as a simple power
analysis (SPA) and a differential power analysis (DPA).

Accordingly, for a device that executes a process using
public-key cryptography, safety from SPA attacks and safety
from DPA attacks are demanded. For example, an A&D-
always method is one of measures against SPA attacks,
whereas a method for randomizing data is one type of mea-
sures against DPA attacks.

Conventionally, it was considered that devices were safe
from both of SPAs and DPAs by combining an SPA measure
implemented with the A&D-always method and a DPA mea-
sure implemented with the randomizing method, thereby
making it possible to completely prevent power analyses.

However, the inventor devised an attack method that can
decrypt a value of a private key d by using a power waveform
even if these measures are taken. This attack is referred to as
a “special PA” in this application.

Initially, the inventor found out that the following attack
can be conducted as a special PA when the private key d is not
randomized. Namely, it was proved that an attacker can
decrypt two-thirds of all bit values of the private key d with a
special PA using a selected message pair of P and Q that
satisfy P>=Q? (mod n) and P=Q for a device having a modular
exponentiation function. Also for a device having a scalar
multiplication function of a point, it was proved that an
attacker can decrypt two-thirds of all the bit values of the
private key d by conducting a similar attack with a special PA
using a selected message pair of P and Q that satisfy 3P=3Q
and P=Q. Moreover, it was proved that this attack can be

10

15

20

25

30

35

40

45

50

55

60

65

2

expanded to a special PA using a selected message pair of P
and Q that satisfy P*=Q%mod n) and P=Q (or aP=0Q and
P=Q)) for a prime number o equal to or larger than 3.

Next, the inventor found out that the following attack can
be conducted as a special PA used when a private key d is
randomized. Namely, randomized exponents are made to
match so that randomized private keys become identical in a
case where P is input and in a case where Q is input, whereby
an attack method similar to that in the case where the private
key is not randomized can be applied. The simplest way to
implement this is to repeat a power measurement when Q is
given by a plurality of times until a randomized key in a case
where P is given and that in a case where Q is given match.
Although the length of time needed for this power measure-
ment is not short at all, it was proved that the power measure-
ment needed to successfully conduct the attack can be com-
pleted within a sufficiently realistic time frame. For the power
measurement, the length of time in units of seconds propor-
tional to the number of times that the power measurement is
made is demanded due to a computation process and a com-
munication time of a low-speed device such as a smart card or
the like. However, once the power measurement has been
completed and data of the power measurement has been trans-
ferred to a PC, the high-performance PC can analyze the data
at high speed.

PRIOR ART DOCUMENTS
Patent Documents

[Patent Document 1] Japanese Laid-open Patent Publication
No. 2000-132096

[Patent Document 2] Japanese Laid-open Patent Publication
No. 2003-233307

[Patent Document 3] International Publication Pamphlet
W02009/122461

Non-Patent Documents

[Non-patent document 1] [IEEE P1363] IEEE P1363/D13
(Draft Version 13, Nov. 12, 1999) main document, Stan-
dard Specifications for Public Key Cryptography, http://
grouper.ieee.org/groups/1363/P1363/draft.html

[Non-patent Document 2] [Kocher99] P. Kocher, I, Jaffe and
B. Jun “Differential Power Analysis”, Crypto’99, LNCS
1666, pp. 388-397, Springer-Verlag, 1999.

[Non-patent Document 3] Jean-Sebastein Coron, “Resistance
against Differential Power Analysis for Elliptic Curve Cry-
posystems”, Cryptographic Hardware and Embedded Sys-
tems (CHES?99), LNCS 1717, pp. 144-157, Springer-Ver-
lag, 1999.

[Non-patent Document 4] “Portable Data Carrier Provided
with Access Protection by Dividing up Codes”, European
Patent No. EP1262037.

SUMMARY

According to an aspect of the embodiments, an encryption
processing device, comprising: a constant multiplier, to
which a first base a and a modulus n are input, configured to
perform a modular exponentiation computation for the modu-
lus n by using a specified constant as an exponent for the first
base a, and to output a computation result as a second base b;
a private key converter, to which a first private key d is input,
configured to compute a second private key d' as a quotient
obtained by dividing the first private key d by the specified
constant; a correction key generator configured to generate a

US 9,130,745 B2

3

correction key d" as a remainder obtained by dividing the first
private key d by the specified constant; a first modular expo-
nentiation computing unit configured to perform a modular
exponentiation computation for the modulus n by using the
second private key d' as an exponent for the second base b, and
to output a computation result; a second modular exponen-
tiation computing unit configured to perform a modular expo-
nentiation computation for the modulus n by using the cor-
rection key d" as an exponent for the first base b, and to output
a computation result as a correction value; and a correction
computing unit, to which the computation result output by the
first modular exponentiation computing unit and the correc-
tion value output by the second modular exponentiation com-
puting unit are input, configured to perform a correction
computation, which is a multiplication process based on the
modulus n, and to output a computation result of the correc-
tion computation as an encryption process result obtained
when the modular exponentiation computation for the modu-
lus n is executed by using the first private key d as an exponent
for the first base a.

The object and advantages of the invention will be realized
and attained by means of the elements and combinations
particularly pointed out in the claims.

It is to be understood that both the forgoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the invention.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 illustrates Table 1 that represents associations
between RSA and ECC computations;

FIG. 2 is an explanatory diagram of an outline of a power
analysis;

FIG. 3 is an explanatory diagram of a simple power analy-
sis (SPA) and a differential power analysis (DPA);

FIG. 4 illustrates an algorithm of a modular exponentiation
computation process using a binary method;

FIG. 5 is an explanatory diagram of the modular exponen-
tiation computation process using the binary method;

FIG. 6 illustrates an example of a power waveform when an
SPA is used against the binary method of FIG. 5;

FIG. 7 illustrates an algorithm of a scalar multiplication
process of a point using the binary method;

FIG. 8 is an explanatory diagram of the scalar multiplica-
tion process of the point using the binary method;

FIG. 9 illustrates an example of a power waveform when an
SPA is used against the binary method of FIG. 7;

FIG. 10 is an explanatory diagram of a determination
operation of private key bits based on a differential waveform
in a DPA;

FIGS. 11A and 11B are an explanatory diagram of a DPA
measure using data randomization;

FIG. 12 illustrates an algorithm of a modular exponentia-
tion computation (function ModExp_ADalways) using an
A&D-always method;

FIG. 13 is an explanatory diagram of the A&D-always
method;

FIG. 14 illustrates a power waveform when an SPA is used
against the A&D-always method;

FIG. 15 illustrates an algorithm of a scalar multiplication
(function PointMul_ADalways) of a point using the A&D-
always method;

FIG. 16 illustrates an algorithm of a modular exponentia-
tion computation (function ModExp_RMUL_and_Adal-
ways) performed by a combination of an SPA measure imple-
mented with the A&D-always method and a DPA measure
referred to as a conventional method 1;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 17 illustrates an algorithm of a modular exponentia-
tion computation (ModExp_RDIV_and_Adalways function)
by a combination of the SPA measure implemented with the
A&D-always method and a DPA measure referred to as a
conventional method 2;

FIG. 18 illustrates an algorithm of a scalar multiplication
(function PointMul_RMUL _and_ADalways) of a point by a
combination of the SPA measure implemented with the
A&D-always method and the DPA measure referred to as the
conventional method 1;

FIG. 19 illustrates an algorithm of a scalar multiplication
(function PointMul_RDIV_and_ADalways) of a point by a
combination of the SPA measure implemented with the
A&D-always method and the DPA measure referred to as the
conventional method 2;

FIGS. 20A and 20B illustrate correlations between a data
value and consumed power in a multiplication;

FIGS. 21A and 21B illustrate correlations between an addi-
tion data value of a point and consumed power;

FIG. 22 illustrates a basic form of a differential waveform
(in a case where a private key is not randomized) generated in
a special PA;

FIG. 23 illustrates a differential waveform of a special PA
when d=(111)*>=7 and a selected message pair of P and Q
(P3=Q?, P=Q) are given;

FIG. 24 illustrates Table 2 that represents associations
between a value d[u-i] of an exponent incremented by 1 bit
when the A&D-always method is executed and a determina-
tion of whether or not values of the exponent before and after
being incremented by 1 bit are a multiple of 3;

FIG. 25 is a diagram of state transitions that represent the
associations of Table of FIG. 24;

FIG. 26 illustrates all patterns when the state transitions of
FIG. 25 are made twice;

FIG. 27 is an explanatory diagram of an attack method
using the state transitions made twice in FIG. 26;

FIG. 28 is an explanatory diagram of a follow decryption
operation using 2-bit decryption when a 2-bit partial key is
unsuccessfully decrypted;

FIG. 29 is an explanatory diagram for analyzing a prob-
ability that low-order bit follow decryption is successfully
made;

FIG. 30 is an explanatory diagram for analyzing a prob-
ability that high-order bit follow decryption is successfully
made;

FIG. 31 illustrates Table 3 that represents associations
between a value d[u-i] of an exponent incremented by 1 bit
when the A&D-always method is executed and a determina-
tion of whether or not values of the exponent before and after
being incremented by 1 bit are a multiple of a prime number
a;

FIG. 32 illustrates Table 4 that represents a decryption
capability of a special PA using P*=Q% (mod n) and P=Q (or
aP=0Q and P=Q);

FIGS. 33A, 33B, and 33C illustrate a basic form of a
differential waveform (in a case where a private key is ran-
domized) generated in a special PA;

FIG. 34 is an explanatory diagram of a differential wave-
form generation method (No. 1) using a special PA when
private keys P and Q are randomized;

FIGS. 35A and 35B illustrate a differential waveform (up-
per portion) and that (lower portion) when randomized pri-
vate keys match;

FIG. 36 is an explanatory diagram of a differential wave-
form generation method (No. 2) using a special PA when the
private keys P and Q are randomized;

US 9,130,745 B2

5

FIG. 37 illustrates an example of a first hardware configu-
ration of encryption processing devices according to first to
third embodiments;

FIG. 38 illustrates an example of a second hardware con-
figuration of the encryption processing devices according to
the first to the third embodiments;

FIG. 39 illustrates a configuration of functions common to
the encryption processing devices according to the first to the
third embodiments;

FIGS. 40A, 40B, and 40C illustrate a power differential
waveform generated in the first to sixth embodiments;

FIG. 41 illustrates a configuration of functions common to
encryption processing devices according to fourth to sixth
embodiments;

FIG. 42 is a flowchart illustrating a control process of the
first embodiment;

FIG. 43 is a flowchart illustrating details (No. 1) of a
modular exponentiation computation process in the first to
the third embodiments;

FIG. 44 is a flowchart illustrating details (No. 2) of the
modular exponentiation computation process in the first to
the third embodiments;

FIG. 45 is a flowchart illustrating a control process of the
second embodiment;

FIG. 46 is a flowchart illustrating a control process of the
third embodiment;

FIG. 47 is a flowchart illustrating a control process of the
fourth embodiment;

FIG. 48 is a flowchart illustrating details (No. 1) of a scalar
multiplication process of a point in the fourth to the sixth
embodiments;

FIG. 49 is a flowchart illustrating details (No. 2) of the
scalar multiplication process of a point in the fourth to the
sixth embodiments;

FIG. 50 is a flowchart illustrating a control process of the
fifth embodiment; and

FIG. 51 is a flowchart illustrating a control process of the
sixth embodiment.

DESCRIPTION OF EMBODIMENTS

Preferred embodiments of the present invention will be
explained below with reference to accompanying drawings.
An order of explanations is as follows.

Encryption processing devices according to first to sixth
embodiments to be described later are devices that have an
SPA measure function implemented with an A&D-always
method and a DPA measure function implemented with a
randomization method, further have a measure function
against special PAs, and perform a modular exponentiation
computation or a scalar multiplication of a point on an elliptic
curve. To help understand the first to the sixth embodiments,
the modular exponentiation computation and the computa-
tion on an elliptic curve are initially described. Also first to
third comparison examples are described to help understand
the first to the sixth embodiments. Moreover, a special PA
method in a case where a private key d is not randomized, and
that in a case where the private key d is randomized are
described. These special PA methods were found by the
present inventor. Thereafter, findings that the inventor
obtained from reviews of the comparison examples and the
special PAs, and the first to the sixth embodiments developed
by the inventor based on the findings are sequentially
described.

<Outline of the Modular Exponentiation Computation>

The modular exponentiation computation is initially
described. In RSA and DH, a computation using a process

10

15

20

25

30

35

40

45

55

60

65

6

called the modular exponentiation computation is performed.
The modular exponentiation computation is a computation
for calculating an expression (0.1) based on a base a, an
exponent X, and a modulus n.

z=a"(mod »n) (0.1)

In RSA and DH, a process for which x is assumed as secret
information is executed. For example, in a decryption com-
putation of RSA, a decryption process is executed by calcu-
lating m that satisfies an expression (0.2) based on an
encrypted text ¢, a private key d, and a public modulus n.

m=c¥mod #) (0.2)

For a DH key exchange, the above provided expression
(0.2) is calculated based on a public key ¢, a private key d, and
a public modulus n of a communication partner, so that a
common key m is obtained. For an electronic signature, an
electronic signature m is obtained by calculating the above
expression (0.2) based on signature target data c, a private key
d, and a modulus n.

In the following explanation, an expression (0.3) is used as
a general expression.

v=a%(mod) (0.3)

In any of the processes, it is difficult for a third party who
does not know a value of the private key d to calculate m,
which is a correction result of a decryption process, a com-
mon key, or a result of the electronic signature process, even
if he or she knows the values of ¢ and n.

<Outline of ECC Computation>

A computation on an elliptic curve is described next. Main
curves among elliptic curves used in ECC are an elliptic curve
of'an expression (1.1) defined in a prime field GF(p), and an
elliptic curve of an expression (1.2) defined in an extension
field GF(2™) of 2 (GF is an abbreviation of Galois field, and p
is a prime number).

=X*+a x+b(mod p) (1.1)

where p is a prime number, a and b are elliptic curve param-
eters (O=a, b<p), and a,b,x,yeGF(p).

Yxy=x>+ax’+b(mod fix)) (1.2)

where f (%) is a polynomial of GF(2™), a and b are elliptic
curve parameters (O=a, b<p), and a,b,x,yeGF (2).

As described above, a and b are called elliptic curve param-
eters, which are intended to uniquely decide an elliptic curve.

A point A on an elliptic curve represented by the expression
(1.1) is represented as A=(x,y) with a combination of x and y
that satisfy the expression (1.1). Similarly, a point A on an
elliptic curve represented by the expression (1.2) is repre-
sented as A=(x, y) with a combination of x and y that satisfy
the expression (1.2).

Moreover, an infinite point (point at infinity) and abase
point are defined as special points on an elliptic curve. Here-
inafter, the infinite point and the base point are denoted as “O”
and “G”, respectively. The base point G is one of points on an
elliptic curve, and shared by users of elliptic curve encryp-
tion. The base point G is used in various types of functions,
such as generation of a pair of public and private keys, using
elliptic curve encryption.

The following discussion in this specification is satisfied
for both of the elliptic curve represented by the expression
(1.1) and that represented by the expression (1.2). Accord-
ingly, expressions such as “elliptic curve”, “point A”, “point
(x,¥)”, “x coordinate”, “y coordinate”, “elliptic curve param-
eters a and b”, and the like are hereinafter used without
making a distinction between the expressions (1.1) and (1.2)
in some cases.

US 9,130,745 B2

7

When a certain calculation (hereinafter referred to as an
addition, and denoted as “+”) is defined for points on an
elliptic curve, it is known that a set of points on the elliptic
curve forms a commutative group. The infinite point O cor-
responds to a zero element (namely, an identity element in the
addition). Moreover, an expression (1.3) is satisfied for an
arbitrary point A (the point A may be the infinite point O) on
the elliptic curve.

A+0=0+4=4 (13)

Hereinafter, an inverse element of the point A is denoted as
“~A”. x and y coordinates of the point —A can be calculated
with an addition or a subtraction in a field GF(p) or GF(2™) in
which an elliptic curve is defined. Specifically, the point -A,
which is the inverse element of the point A=(x, y), is repre-
sented by an expression (1.4) when an elliptic curve is defined
by the expression (1.1), or the point —A is represented by an
expression (1.5) when an elliptic curve is defined by the
expression (1.2).

—A=(x,-y) (1.4)

—A=(x,x+y) (1.5)

Also x and y coordinates of a point A; represented as
A=A +A, based on certain points A; and A, can be calcu-
lated with an addition, a subtraction, a multiplication or a
division in the field GF(p) or GF(2,,) by using x and y coor-
dinates of the points A| and A,. Here, if A,=A |, A=A +A,is
also represented as 2A,, and a calculation for obtaining the
point A,=2A, from the point A, is referred to as doubling.
Also doubling is implemented with an addition, a subtraction,
a multiplication or a division in the field GF(p) or GF(2™).

Additionally, a subtraction is defined as an addition of an
inverse element as represented by an expression (1.6).

A1-4,=4,+(-45) (1.6)

Furthermore, for the point A on the elliptic curve, a com-
putation called a scalar multiplication is defined by using an
integer x called a scalar value. The scalar multiplication of a
point is a process for calculating a point Von an elliptic curve,
which satisfies

V=xA4 %))

from the point A on the elliptic curve, and the integer x called
a scalar value.

In ECC, a process for which x is assumed as secret infor-
mation is executed. Assuming that a point on an elliptic curve,
which is a public key of a communication partner, is A and a
private key is d in a case of an EDCH key exchange, the point
V on the elliptic curve, which satisfies

V=d4 (1.8)

is calculated, so that a safe key agreement is implemented. It
is difficult for a third party who does not know the value of the
private key d to calculate a correct value of the common key.

In the expression (1.8), d is a private key, which is a value
that is not be leaked to illegal third parties such as an attacker
or the like. Namely, in ECC, protection of the value of d is an
important tamper-proof function.

Mathematically, obtaining the value of d is known as a
discrete logarithm problem such that the amount of compu-
tation for calculating d is too large to obtain d in a realistic
time frame even if values other than d are known in the
expression (1.8). More specifically, it is known that there is a
difficulty in obtaining the value of d even if the values of A and
V are known when elliptic curve parameters are equal to or
larger than 160 bits.

10

15

20

25

30

35

40

45

50

55

60

65

8

For a public key and a private key in elliptic curve encryp-
tion, a public key is given by V that satisfies V=dG based on
the above described base point G and scalar value d that
represents a private key. Namely, the publickey V is a point on
an elliptic curve, whereas the private key d is a scalar value.
Even if an attacker learns the point G and V, it is very difficult
to calculate the private key d from the point G and V. This is
because the amount of this calculation is enormous. This is
also known as the calculation difficulty of the discrete loga-
rithm problem.

Additionally, ECC is also available for a key agreement
using a DH algorithm, a digital signature algorithm (DSA),
and the like. For whatever purpose ECC is used, a process
using ECCincludes a scalar multiplication. The process using
ECC is as follows by taking a DH key agreement as an
example.

Assume that a private key of a first device is d, and that of
a second device is d. In this case, a public key Q , of the first
device is calculated as Q,=d G from a base point G, and a
public key Q5 of the second device is calculated as Qz=d;G
from the base point G. In this way, a scalar multiplication is
performed to generate a public key.

Additionally, the first device transmits the public key Q , of
the local device to the second device, which then transmits the
public key Qj of the local device to the first device. Then, the
first device calculates d ,Qp with a scalar multiplication, and
also the second device calculates d;Q , with a scalar multi-
plication. As a result, the first device and the second device
can share the same key K as represented by an expression

(1.9).

K=d 0p=d ((dBG)=dp(dAG)=dpQ 4 (1.9)

IfECCisused for a purpose other than the above described
DH key agreement, a scalar multiplication is also performed.

<Power Analysis (PA)>

As described above, it is known that a private key d difficult
to be mathematically obtained can be easily decrypted by
using a power analysis (PA). A fundamental mechanism of
PAs is highly associated with a process procedure of a modu-
lar exponentiation computation for calculating the expression
(0.3), or that of a scalar multiplication of a point for calculat-
ing the expression (1.8). PAs against a modular exponentia-
tion computation and a scalar multiplication of a point are
explained after computation procedures of the modular expo-
nentiation computation and the scalar multiplication of a
point are described.

Intuitively, since there are associations represented by
Table 1 of FIG. 1, it becomes easy to simultaneously under-
stand RSA and ECC computations based on these associa-
tions. In FIG. 1, a modular exponentiation computation “a“
(mod n)” in RSA makes an association with a scalar multi-
plication of a point “dA” in ECC. A multiplication “axd (mod
n)” in RSA makes an association with an addition of a point
“A+B” in ECC. A division “axd™' (mod n)” in RSA makes an
association with a subtraction of a point “A-B” in ECC.
Squaring “a® (mod n)” in RSA makes an association with
doubling of a point “2A” in ECC. A value “1” in RSA makes
an association with an “infinite point O” in ECC. A multipli-
cation of a value “1” “1xa=ax1=a” in RSA makes an asso-
ciation with an addition of the “infinite point O” “O+A=A+
0=A” in ECC. Squaring “1°=1” of the value “1” in RSA
makes an association with doubling “20=0" of the infinite
point O in ECC.

A PA is an analysis method (Non-patent Document 2)
found out in 1998. As illustrated in FIG. 2, this is a method for
measuring power consumed by a device such as a smart card
or the like that is executing an encryption function (hereinaf-

US 9,130,745 B2

9

ter referred to as an encryption process), and for estimating
and analyzing secret information of a user, which is stored
within the device, with the use of the measured data (FIG. 2).

<PA Types: simple power analysis (SPA) and differential
power analysis (DPA)

PAs include two types such as a simple power analysis
(SPA) and a differential power analysis (DPA) (FIG. 3). Both
of' the attacks are those for breaking a private key by observ-
ing an internal state of an encryption processing device with
a power waveform.

An SPA is an attack method using a single power wave-
form. As illustrated in FIG. 3(a), a private key (encryption
key, secret key) is broken by directly observing contents of a
process executed by an encryption processing device based
on a shape of a power waveform with the use of a correlation
between the contents of the process and an encryption key.

A DPA is an attack method using a difference among a
plurality of power waveforms. As illustrated in FIG. 3B, a
private key (encryption key, secret key) is broken by indi-
rectly observing a data value processed within an encryption
processing device based on a difference among a plurality of
power waveforms with the use of a correlation between con-
tents of a process and an encryption key.

As described above, a PA attack is one type of non-invasive
attacks, which attempts to decrypt a scalar value d used as a
private key by measuring power consumed by a device that is
performing a scalar multiplication. Accordingly, for whatever
purpose RSA, DH, or ECC is used, it is effective to take a
measure that does not make a waveform of power consumed
by a device that is performing a modular exponentiation com-
putation or a scalar multiplication exhibit a feature of a private
key d as a measure to prevent the private key d from being
leaked. If no measures are taken against a PA attack, a private
key d can be possibly decrypted based on a feature of a
waveform of power consumed by a device that is performing
a modular exponentiation computation or a scalar multipli-
cation. Since an SPA and a DPA are attack methods of differ-
ent types, measures need to be taken against both of an SPA
and a DPA.

Encryption processing devices according to the first to the
sixth embodiments to be described later are designed to be
safe from a special PA to be described later in addition to both
an SPA attack and a DPA attack. Accordingly, to help under-
stand advantages of the first to the sixth embodiments, some
comparison examples are described next.

<Binary Method (First Comparison Example)>

A “binary method” is initially described as a first compari-
son example. This method is hereinafter referred to as the first
comparison example. The binary method is vulnerable to
both SPA and DPA attacks.

The binary method in a modular exponentiation computa-
tion is firstly described.

When a modular exponentiation represented by the expres-
sion (0.3) is simply calculated if all of n, a, and d in the
expression (0.3) have a length equal to or longer than 1,024
bits, a multiplication using (mod n) needs to be performed by
d times. Since this needs the amount of calculation equal to or
larger than 2'°%%, itis not realistic. As a technique for reducing
this amount of calculation to log,d, a computation called the
binary method is known.

FIG. 4 illustrates an algorithm of the binary method in the
modular exponentiation computation, and FIG. 5 illustrates
an outline of the process.

Here, for convenience of an explanation, a bit length of a
private key d is assumed to be u. Moreover, an ith bit of the
private key d is denoted as d[i] (O<i<u-1). d[0] is the least

10

15

20

25

30

35

40

45

50

55

60

65

10

significant bit (LSB), and d[u-1] is the most significant bit
(MSB). Then, the private key d of u bits is as represented by
an expression (2.1).

d=dfu-1]||... |d[1/||¢/0]

“””

2.1)

where indicates a concatenation of bit strings having a
length equal to or longer than 1 bit.

Then, an expression (2.2) is obtained based on the expres-
sions (0.3) and (2.1).

a(modn) = axx (2 du—11+1 +...+2'd[1] + 2°d[0]) (modn) (22)

=axx (27 du—1]) (modn) X ... a == (21 d(1])

(modn) X a =« (2°4[0]) (modrn)

where “**” indicates a modular exponentiation computation.

The binary method is a calculation procedure using the
expression (2.2). In the expression (2.2), the bit value d[i] of
d is scanned sequentially from the high-order bit to the low-
order bit (namely, from i=u-1 to 0), and the following expres-
sion (2.3) is computed according to the bit value d[i] of d.

If d[i]=1: perform a multiplication (v: =vxa(mod n)) after
squaring (v: =vxv(mod n)).

Ifdfi]=0: perform only squaring (v: vxv=(mod #). (2.3)

For example, a case where the private key d is (1100101),
is specifically described. The binary method is a method for
implementing a modular exponentiation computation based
on an expression (2.4).

a? (mod #)=((((12xa)?)xa)?)?Pxa)?Pxa(mod 1) (2.4)

Namely, if a result of a scalar multiplication is represented
with a variable v, the variable v is firstly initialized with a
value 1 in the binary method as represented by an expression
(2.5) (line 401 of FIG. 4).

v=0 2.5)

Thereafter, the expression (2.3) is executed sequentially
from the MSB to the LSB (a loop process from line 402 line
to line 405 of FIG. 4). Namely, a process for obtaining vxv
(mod n) with squaring, for thereafter performing a multipli-
cation if d[i]=1, and for assigning an obtained result to the
variable v (line 404 of FIG. 4) is repeated. Then, an obtained
value is finally output to the variable v (line 406 of FIG. 4).

Specifically, d[6]=1. Therefore, squaring and a multiplica-
tion are performed for the 6th bit as represented by an expres-
sion (2.6) (D6 and A6 of FIG. 5).

v=12xa(mod #) (2.6)

Additionally, d[5]=1. Therefore, squaring and a multipli-
cation are performed for the 5th bit as represented by an
expression (2.7) (D5 and A5 of FIG. 5).

v=(12xa)*xa(mod #) 2.7)

Furthermore, d[4]=0. Therefore, only squaring is per-
formed and an addition is not performed for the 4th bit as
represented by an expression (2.8) (D4 of FIG. 5).

v=((1%xa)*xa)*(mod ») (2.8)

Similarly, since d[3]=0, only squaring is performed and an
addition is not performed for the 3rd bit as represented by an
expression (2.9) (D3 of FIG. 5).

v=(((1%xa)*xa)*y*(mod) (2.9)

US 9,130,745 B2

11

For the second bit, d[2]=1. Therefore, squaring and a mul-
tiplication are performed as represented by an expression
(2.10) (D2 and A2 of FIG. 5).

v=(((17xa)’xa)?)y’xa(mod n)

Still further, for the first bit, d[1]=0. Therefore, only squar-
ing is performed and a multiplication is not performed as
represented by an expression (2.11) (D1 of FIG. 5).

(2.10)

v=((((1Pxay’xa)?)*Y’xa)*(mod 1)

Lastly, for the Oth bit, d[0]=1. Therefore, squaring and a
multiplication are performed as represented by an expression
(2.12) (DO and A0 of FIG. 5).

v=((((Pxa)*xa)?)?)xa)*Vxa(mod #)

@.11)

(2.12)

An exponent of the point a, which is multiplied according
to the ith bit (d[i]=1) as described above, is 2 as understood
from the expression (2.12). Accordingly, with the procedures
described with the above provided expressions (2.5)to (2.12),
v=a“(mod n) can be surely obtained based on the expression
2.4).

As is evident from the above described example, with the
binary method, the number of times that squaring is per-
formed is equal to the bit length u of the private key d, and the
number of times that a multiplication is performed is equal to
a Hamming weight of the private key d. Accordingly, the
amount of calculation of the modular exponentiation compu-
tation with the binary method is not the order of 2* but
reduced to the order of u.

Here, in the binary method, a computation sequence of
squaring and a multiplication is linked to the bit value of d
unchanged, and an SPA breaks d by using this nature.
Namely, as represented by an example of a power waveform
illustrated in FIG. 6, the following decryption can be per-
formed in an environment where a distinction between pro-
cesses of a multiplication and squaring can be made by using
a power waveform. Namely, if a multiplication is performed
after squaring, the bit value of the exponent d can be
decrypted to be 1 (601 or 603 of FIG. 6). In contrast, if only
squaring is performed, the bit value of the exponent d can be
decrypted to be 0 (602 of FIG. 2). This decryption is per-
formed for all bits of d, so that an SPA is successfully con-
ducted.

As a measure against SPAs, a method for making a com-
putation pattern of a multiplication and squaring regular
regardless of the bit value of d is known. Also an A&D-always
method to be described later is a method for implementing
this measure.

A binary method for a scalar multiplication of a point is
described next.

For example, if the private key d is 160 bits, d can possibly
be a very large number (such as a number close to 2'%9).
Accordingly, since performing a scalar multiplication as
defined by the expression (1.8) needs a very large number of
times that an addition of a point is performed, this is unreal-
istic. Similarly to the case of the modulus exponentiation
computation, the binary method is a method for reducing the
order ofthe amount of calculation of a scalar multiplication to
that of the number of bits of the private key d.

FIG. 7 illustrates an algorithm of the binary method in the
scalar multiplication of a point, and FIG. 8 illustrates an
outline of the process.

For convenience of an explanation, the bit length of the
private key d is assumed to be u similarly to the case of the
modular exponentiation computation. Moreover, the ith bit of
the private key d is denoted as d[i] (Ou-1). d[0] is the least
significant bit (LSB), whereas d[u-1] is the most significant

10

15

30

40

45

50

55

12

bit (MSB). As a result, the private key d of u bits is as
represented by the above described expression (2.1) similarly
to the case of the modular exponentiation computation.

Then, an expression (3.1) is obtained based on the expres-
sions (1.8) and (2.1).

dA=2""Ydfu-1]d+ ... +2'd[1]4+2°d[0]4 (3.1)

The binary method is a calculation procedure using the
expression (3.1). In the expression (3.1), the bit value d[i] of
d is scanned sequentially from the high-order bit to the low-
order bit (namely, i=u-1 to 0), and a computation of the
following expression (3.2) is performed according to the bit
value d[i] of d.

Ifdfi]=1: perform an addition (v: =v+4) after dou-
bling (v: =2xv).

Ifdfi]=0: perform only doubling (v: =2xv). (3.2)

A relationship between the expression (3.2) in the scalar
multiplication of'a point and the expression (2.3) in the modu-
lar exponentiation computation can be understood based on
the above described associations of FIG. 1.

For example, a case where the private key d is (1100101),
is specifically described. The binary method is a method for
implementing a scalar multiplication based on an expression
(3.3).

dA=2(2Q22Q2QQO0+A)+A))+A)+A=254+2° 4+

224+4 (3.3)

Namely, if a result of the scalar multiplication is repre-
sented with a variable V, the variable V is firstly initialized to
the infinite point O in the binary method as represented by an
expression (3.4) (line 701 of FIG. 7).

V=0 (3.4)

Thereafter, the expression (3.2) is executed sequentially
from the MSB to the LSB (a loop process from line 702 to line
705 of FIG. 7). Namely, a process for obtaining 2V with
doubling (line 703 of F1G. 7), for performing an addition of a
point A if d[i]=1, and for assigning an obtained result to the
variable V (line 704 of FIG. 7) is repeated. Then, an obtained
value is finally output to the variable V (line 706 of FIG. 7).
Here, “ECDBL(V) in line 703 of FIG. 7 indicates a function
process for performing doubling 2V for the value of the
variable V. Moreover, “ECADD(V,A)” in line 704 of FIG. 7
indicates a function process for adding the value of the vari-
able A to the value of the variable V.

Specifically, d[6]=1. Therefore, doubling and an addition
are performed for the 6th bit as represented by an expression
(3.5) (D6 and A6 of FIG. 8).

V=20+4 3.5)

Additionally, since d[5]=1, doubling and an addition are
performed for the 5th bit as represented by an expression (3.6)
(D5 and A5 of FIG. 8).

V=2(20+4)+4 (3.6)

Furthermore, since d[4]=0, only doubling is performed for
the 4th bit as represented by an expression (3.7) (D4 of FIG.
8).

V=2(2(20+4)+4) 3B.7

Similarly, since d[3]=0, only doubling is performed and an
addition is not performed also for the 3rd bit as represented by
an expression (3.8) (D3 of FIG. 8).

V=2(22Q20+A)+4)) (3.8)

US 9,130,745 B2

13
For the second bit, d[2]=1. Therefore, doubling and an
addition are performed as represented by an expression (3.9)
(D2 and A2 of FIG. 8).
V=2022(22+4)+A))+4
For the first bit, d[1]=0. Therefore, only doubling is per-
formed and an addition is not performed as represented by an
expression (3.10) (D1 of FIG. 8).
V=202(2(22(20+A)+A)))+4) (3.10)
Lastly, for the Oth bit, d[0]=1. Therefore, doubling and an

addition are performed as represented by an expression (3.11)
(D0 and A0 of FIG. 8).

V=2(222Q22Q0O+A)+A))+A4))+A4

(3.9)

(3.11)

A coefficient of the point A, which is added according to
the ith bit (d[i]=1) as described above, is 2" as understood
from the expression (3.11). Therefore, with the procedures
described with the above provided expressions (3.4)to (3.11),
V-dA can be surely obtained based on the expression (3.3).

As is evident from the above described example, with the
binary method, the number of times that doubling is per-
formed is equal to the bit length u of the private key d, and the
number of times that an addition is performed is equal to the
Hamming weight of the private key d. Accordingly, the
amount of calculation of a scalar multiplication performed
with the binary method is not the order of 2“ but reduced to the
order of u similarly to the case of the modular exponentiation
computation.

Here, in the binary method of the scalar multiplication of a
point, a computation sequence of doubling and an addition is
linked to the bit value of d unchanged, and an SPA breaks d by
using this nature. Namely, as represented by an example of a
power waveform illustrated in FIG. 9, the following decryp-
tion can be performed in an environment where a distinction
can be made between processes of an addition and doubling
of'a point by using a power waveform. Namely, if an addition
is performed after doubling, the bit value of the exponent d
can be decrypted to be 1 (901 or 903 of FIG. 9). In contrast, if
only doubling is performed, the bit value of the exponent d
can be decrypted to be 0 (902 of FIG. 9). This decryption is
performed for all bits of d, so that an SPA can be successfully
conducted.

Similarly to the case of the modular exponentiation com-
putation, a method for making a computation pattern of an
addition and doubling regular regardless of the bit value of d
is known as a measure against SPAs in a scalar multiplication
of'a point. The A&D-always method to be described later is a
method for implementing this measure.

The above described binary method in the modular expo-
nentiation computation or the scalar multiplication of a point
is vulnerable not only to SPA attacks but to DPA attacks. To
help understand an explanation of safety from DPA attacks, a
basic idea in a case where an attack is conducted with a DPA
is described.

With the binary method, a“(mod n) (case of a modular
exponentiation computation) or dA (case of a scalar multipli-
cation of a point) is finally calculated while incrementing a bit
of a scalar value or an exponent (d) sequentially from the
high-order bit by 1 as follows

a?“=1](mod #)—a?!]||dfu-2](mod #)—a®*"1]|ld
[u=2]|ldfu-3](mod n)— . ..

or

dfu-1]4—>(d[u-1]|d[u=21)d—(dfu-1]|d[u=2]|ld[u-
3])4— . .. in order to calculate a(mod #) or d4

for d=dfu-1]||. .. ||d[1]]d/0] (expression (2.1)).

10

15

55

60

65

14
Each time the loop process, illustrated in FIG. 4 or 7 (402
to 405 of FIG. 4 or 702 to 705 of FIG. 7), for the variable is
executed, a result obtained by incrementing the exponent by
1 bit is stored in the variable v or V.
For example, if d=(1101),, the calculation is sequentially
performed as follows.

CY2(mod #)—=CY2(mod #)—CH19%(mod #)—C
1920 1)

or

(1),4—(11),4—(110),4—(1101),4

An attacker who conducts a DPA repeatedly determines
whether or not a predicted bit of d is correct based on a power
waveform while predicting the bits of d one by one with the
use of the nature of the binary method, such that the calcula-
tion is performed while incrementing the bit value of an
exponent or a scalar value by 1. For an attack conducted with
a general round-robin method, the amount of labor propor-
tional to 27 (case of a modular exponentiation computation)
or d (case of a scalar multiplication of a point) is needed to
decrypt the private key. In the meantime, by using a DPA, the
private key can be decrypted with the amount of labor pro-
portional to d (case of the modular exponentiation computa-
tion) or log,d (case of the scalar multiplication of a point).

For example, if the most significant bit of d is 0, a data value
represented by a® (mod n) (case of the modular exponentia-
tion computation) or 0A (mod n) (a case of the scalar multi-
plication of a point) is calculated within an encryption pro-
cessing device, and the calculated value is loaded and stored
in an internal memory. In contrast, if the most significant bit
of d is 1, a data value represented by a' (mod n) (case of the
modular exponentiation computation) or 1A (mod n) (case of
the scalar multiplication of a point) is calculated within the
encryption processing device, and the calculated value is
loaded and stored in the internal memory.

For general hardware including an encryption processing
device, a nature such that power proportional to the Hamming
weight (“1”) of a loaded and stored data value is consumed is
known. By using this nature, a DPA can determine whether a
loaded and stored data value is either a° (mod n) or a' (mod n)
(case of the modular exponentiation computation), or
whether the loaded and stored data value is either 1A or 0A
(case of the scalar multiplication of a point). As a result, for
example, the following determination is made with a similar
procedure in order to decrypt the value of the subsequent
low-order bit after the most significant bit of d is proved to be,
1. Namely, whether the loaded and stored data value is either
a?? (mod n) or a®? (mod n) (case of the modular expo-
nentiation computation), or whether the loaded and stored
data value is either (10),A or (11),A (case of the scalar
multiplication of a point) is determined.

A specific procedure of the DPA is represented by the
following (DPA-1) to (DPA-6).

(DPA-1) Measure power Pow (1) =1, 2, . . ., L) consumed
when V=M,(j=1, 2, ..., L) is input as an encrypted text V. t is
time information.

(DPA-2) Initialize to i:u-1;

(DPA-3) An attacker predicts a bit value of d[i].

(DPA-4) The attacker calculates a value of G,(d[u-1]| . . .
[ld[iDM,; respectively for j=1, 2, .. ., L based on known M,,
d[u-1]||. . .||ld[i+1] and the predicted d[i]. According to results
of this calculation, L pieces of consumed power data Pow, (t)
are classified into 2 groups according to the following criteria.

Group 1: a set of Pow, (t) where the least significant bit of
x coordinate (or y coordinate) of G, is 1 for M,

US 9,130,745 B2

15

Group 2: a set of Pow; (t) where the least significant bit of
x coordinate (or y coordinate) of G, is 0 for M, (DPA-5)
Generate a differential waveform Ditf(t) represented by (av-
erage of Pow, (t) belonging to Group 1)—(average of pow, (1)
belonging to Group 0) for the consumed power data classified
into 2 groups as described above.

As aresult, if a spike illustrated in FIG. 10A appears in the
differential waveform, it is determined that the predicted d[i]
is correct.

Ifthe differential waveform is a flat waveform illustrated in
FIG. 10(b), it is determined that the predicted d[1] is incorrect.
(DPA-6) If i=0 as a result of the calculation i:i-1, a bit yet to
be decrypted is left. Therefore, the procedure returns to
(DPA-3). If i<0, all bit values of d have been decrypted.
Therefore, the procedure is ended.

In DPA-5, if d[i] is correctly predicted, Group 0 of con-
sumed power, in which all of least significant bits of x coor-
dinate (y coordinate) are “0”, is subtracted from Group 1 of
consumed power, which is represented by G, and in which all
of'the least significant bits of X coordinate (y coordinate) of a
data value are “1”. Therefore, a difference between outputs
“0” and “1” of consumed power appears as a spike (FIG.
10(a)). If d[i] is incorrectly predicted, “0” and “1” coexist as
the least significant bits of the x coordinate (y coordinate) of
G, inboth of Groups 0 and 1. Therefore, a difference between
the consumer powers does not occur, leading to a flat wave-
form (FIG. 10(5)).

As a measure against a DPA, the method called data ran-
domization illustrated in FIGS. 11A and 11B is known. If no
measures are taken against DPAs, an operation illustrated in
FIG. 11A is performed. Namely, a sequence of calculation
data values a®™™ (mod n)—sa®*H=2mod n)—
a?lu-Hld2=21(mod n)—sa@e-tkde-201d#=3]mod n)— . . . (case
of' a modular exponentiation computation) or d[u-1]A—(d
[u-1]||d[u-2D)A—=(d[u-1]||d[u-2]||d[u-3])A— . . . (case of a
scalar multiplication of a point) is uniquely decided based on
the value of the private key d[i]. In contrast, these calculation
data values are disturbed by using a random number as illus-
trated in FIG. 11B, so that the sequence values of the calcu-
lation data are randomized. Accordingly, a correlation
between consumed power and a private key can be concealed,
and a process safe from DPAs can be implemented. Atthe end
of the computation, a normalization process for correcting
randomized data values is executed, so that a modular expo-
nentiation computation value a%(mod n) or a scalar multipli-
cation value dA is finally obtained. With a method (third
comparison example) called “randomizing A&D-always
method” to be described later, a DPA measure is simulta-
neously implemented by using data randomization while
implementing an SPA measure based on the A&D-always
method.

<PA Measure Implemented with the A&D-Always
Method (Second Comparison Example)>

As one of measures taken against SPAs, a method called
the A&D-always method is known. This method is hereinaf-
ter referred to as a second comparison example. The A&D-
always method is an abbreviation of Add-and-Double-always
method. This method is characterized in that squaring and a
multiplication (case of a modular exponentiation computa-
tion) or doubling and an addition of a point (case of a scalar
multiplication of a point) are always performed in the same
pattern regardless of the bit value of the private key d.

FIG. 12 illustrates an algorithm of the modular exponen-
tiation computation using the A&D-always method. FIG. 13
illustrates an outline of the A&D-always method.

Assume that the bit length of the private key d is u. More-
over, the ith bit of the private key d is denoted as d[i] (O=i=u-

10

15

20

25

30

35

40

45

50

55

60

65

16
1).d[0] is the least significant bit (LSB), whereas d[u-1] is the
most significant bit (MSB). As a result, the private key of u
bits d is represented by the above described expression (2.1).
Moreover, a base and a modulus in the modular exponentia-
tion computation are respectively assumed as a and n. An
output value v=a“(mod n).

Basically, a computation result (output of each squaring of
FIG. 13) ina case of d[i]=0is calculated for a buffer t[0] (lines
1201 and 1203 of FIG. 12), and a computation result (output
of each multiplication of FIG. 13) in the case of d[i]=1 is
calculated for a buffers t[1] (line 1204 of FIG. 12). Then, a
correct value (output of “select” of FIG. 13) is copied to the
buffer t[0] according to the bit value of d[i] (line 1205 of F1G.
12). The above described computation is repeated for all the
bits of d (the loop process from line 1202 to line 1206 of F1G.
12).

As illustrated as first and second stages of FIG. 13, squar-
ing and a multiplication are always repeated to respectively
perform squaring and a multiplication for the calculations for
t[0] and t [1] in each of the computation stages regardless of
the bit value of d. Accordingly, a power waveform results in
that illustrated in FIG. 14, and bit values of d are difficultto be
obtained from the waveform, whereby an encryption process-
ing device is safe from an SPA.

For ease of an explanation using the randomization method
to be described later, a process for executing the A&D-always
method for the modular exponentiation computation with the
algorithm of FIG. 12 based on a base a, a secret key d, and a
modulus n is represented as a function ModExp_ADalways
(a,d,n).

The A&D-always method can be also applied to a scalar
multiplication of a point in ECC. FIG. 15 illustrates an algo-
rithm of the scalar multiplication of a point using the A&D-
always method. The above described FIG. 12 illustrates an
outline of this algorithm.

A representation of the private key d is similar to that in the
case of the modular exponentiation computation. A point on
an elliptic curve in the scalar multiplication of a point is
assumed to be A. An output value v=dA.

Similarly to the case of the modular exponentiation com-
putation, a computation result (output of each ECDBL of
FIG. 13) in the case of d[i] is calculated for a buffer T[0] (lines
1501 and 1503 of FIG. 15), and a computation result (output
of'each “ECADD” of FIG. 13) in the case of d[i]=1 is calcu-
lated for a buffer T[1] (line 1504 of FIG. 13). Then, a correct
value (output of “select” of FIG. 13) is copied to the buffer
T[0] according to the bit value of d[i] (line 1505 of FIG. 15).
The above described computation is repeated for all the bits of
d (loop process from line 1502 to line 1506 of FIG. 15). Here,
“ECDBL(T[01]) in line 1503 of FIG. 15 indicates a function
process for performing doubling 2T[0] for the value of the
buffer T[0]. Moreover, “ECADD (T[0], T[1])” in line 1504 of
FIG. 15 indicates a function process for adding the value of
the buffer T[1] to the value of the buffer T[0].

As illustrated in the first and the second stages of FIG. 13,
doubling and an addition are always repeated regardless of a
bit value of d in order to perform doubling (“ECDBL”") and an
addition of a point (ECADD”) for the calculations of t[0] and
t[1] that respectively correspond to T[0] and T[1] in each of
the computation stages. Accordingly, a power waveform
results in that illustrated in FIG. 14, and bit values of d are
difficult to be obtained from the waveform. Therefore, this
method is safe from SPAs similarly to the case of the modular
exponentiation computation.

For ease of an explanation using the randomization method
to be described later, a process for executing the A&D-always
method for a scalar multiplication of a point with the algo-

US 9,130,745 B2

17

rithm of FIG. 14 for a secret key d and a point A on an elliptic
curve is represented as a function PointMul_ADalways (d,
A).

<DPA Measure Using the Randomizing A&D-Always
Method (Third Comparison Example)>

using the A&D-always method can prevent SPAs, but it is
difficult to prevent DPAs. As a measure against DPAs, Non-
patent Document 3 discloses a method for randomizing a
private key d as a measure against DPAs. This method is
hereinafter referred to as a conventional method 1.

With the conventional method 1, a modular exponentiation
or a scalar multiplication, which uses d;' that satisfies

d;'=d+r#E (r,: 20-bit random number) 4.1)

is performed instead of a modular exponentiation or a scalar
multiplication, which uses d. r; is a random number that varies
each time a computation is performed, #E is a parameter
called an order. In the conventional method 1, a 20-bit random
number 1, is recommended in consideration of a tradeoff
between security and a processing speed. The order #E is a
value that represents a period in a modular exponentiation or
a scalar multiplication of a point. It is known that, for an
arbitrary a or A, an equation

a*£=1(mod #) 4.2)

is satisfied in a case of a modular exponentiation computa-
tion, or an equation

HEA=0 (43)

is satisfied in a case of a scalar multiplication of a point. By
using the conventional method 1, all bits of d ' are randomized
with the random number r,. Therefore, an encryption process-
ing device is made safe from DPAs. Moreover, if the period-
icity of #E is taken into account,

a¥(mod n)=a?"*E=ax (a*Fy=ax1=a*(mod ») and

dyd=dAsr(HEA)=dA+O=dA,

therefore, computation results match those obtained for the
private key d.

The conventional method 1 is a DPA measure for random-
izing an exponent with a multiplication using a random num-
ber. In contrast, Non-Patent Document 4 discloses a method
for randomizing an exponent with a division using a random
number. This method is hereinafter referred to as a conven-
tional method 2.

With the conventional method 2, new exponents d/,e; are
calculated from the exponent d and the random number r;
based on the following expressions (4.4) and (4.5).

dr=|drm] (4.4)

e;'=d(mod r;) (4.5)

Note that | x| is a symbol that represents an integral part of x.
For example, | 3.3]=3, | 7.8]=7, and | 6 |=6. The random num-
ber 1, is a 20-bit random number that varies each time the
compautation is performed, similarly to the conventional
method 1. d; and e/, which are represented by the expressions
(4.4) and (4.5), are generated, so that values of a quotient and
a remainder obtained when d is divided by 1, can be respec-
tively given to d;' and e;. With the conventional method 2, a
modular exponentiation computation represented by

(@H¥'xa? (mod n) (4.6)
or a scalar multiplication of a point represented by
d/(rid)yre;'d 4.7

10

15

20

25

30

35

40

45

50

55

60

65

18

is performed by using the generated values. Since all bit
values of r,, d/, and e are randomized, a process safe from
DPAs can be implemented. Moreover, since d;' and e are the
values of the quotient and the remainder obtained when d is
divided by 1,

d=d;'xr+e; (4.8)

is satisfied. Namely, based on the expression (4.8), the expres-
sions (4.6) and (4.7) can be modified to

(@¥'xa? (mod n)=a¥"7*¥"(mod n)=a?(mod n)

d/(rid)yre/A=(d;'xr+e;)A=dA.

The results match those for the private key d.

To take measures against power analyses, not either but
both of SPAs and DPAs need to be simultaneously prevented.
This is because an attacker can obtain the value of a private
key d whichever attack is conducted successfully. To take
SPA and DPA measures, a method implemented by combin-
ing both SPA and DPA measures is general (FIG. 15). By
combining these measures, both of the attacks can be pre-
vented.

To take measures against power analyses, not either but
both of SPAs and DPAs need to be simultaneously prevented.
This is because an attacker can obtain the value of a private
key d whichever attack is conducted successfully. To take
SPA and DPA measures, a method implemented by combin-
ing both SPA and DPA measures is general. By combining
these measures, both of the attacks can be prevented.

Namely, by combining the SPA measure implemented with
the A&D-always method and either of the DPA measure
referred to as the conventional method 1 and the DPA mea-
sure referred to as the conventional method 2, both of SPA and
DPA attacks can be prevented.

FIG. 16 illustrates an algorithm of a modular exponentia-
tion computation implemented by combining the SPA mea-
sure implemented with the A&D-always method and the DPA
measure referred to as the conventional method 1, and F1G. 17
illustrates an algorithm of a modular exponentiation compu-
tation implemented by combining the SPA measure imple-
mented with the A&D-always method and the DPA measure
referred to as the conventional method 2.

The algorithm illustrated in FIG. 16 is very simple. Ini-
tially, a 20-bit random number r is generated (line 1601).
Next, a private key represented by the expression (4.1) is
randomized by using the random number 1;, a secret key d,
which is an input value, and an order #E (line 1602). Then, by
using a resultant key d/=d+#Er; as an exponent, a base a, and
amodulus n as input values, the function ModExp_Adalways
of the modular exponentiation computation using the A&D-
always method of FIG. 12 is executed (line 1603). Namely,
the A&D-always method is executed by using the randomized
private key d;! as a replacement for the private key d, which is
aninput value, and v is output as a result (line 1604). With this
modular exponentiation computation, the SPA measure
implemented with the A&D-always method is taken.

InFIG. 17, the 20-bit random number r, is generated in line
1701, and the randomized private keys d;' and r;', which are
represented by the expressions (4.4) and (4.5), are thereafter
generated in lines 1702 and 1703. Then, the function ModEx-
p_Adalways of the modular exponentiation computation
using the A&D-always method illustrated in FIG. 12 is
executed by using 1, as the exponent, the base a, and the
modulus nas input values in line 1704. As aresult, a'=a” (mod
n) is calculated. Next, in line 1705, the function ModExp_Ad-
always of the modular exponentiation computation using the
A&D-always method is executed with the use of d;! as the

US 9,130,745 B2

19

exponent, the base a, and the modulus n as input values in line
1705. In this way, t=(a')% (mod n) is calculated. Moreover, the
function ModExp_Adalways of the modular exponentiation
computation using the A&D-always method is executed with
the use of ¢;' as the exponent, the base a, and the modulus n as
input values in line 1706. In this way, u=a? (mod n) is
calculated. Lastly, the multiplication process v:txu (modn) is
calculated in line 1707. With the calculations in lines 1704,
1705,1706 and 1707, the expression (4.6) is computed, and a
final result v=a“(mod n) is obtained. With the modular expo-
nentiation computation represented by lines 1704, 1705,
1706 and 1707, an SPA measure implemented with the A&D-
always method is taken.

The algorithms illustrated in FIGS. 16 and 17 can be easily
expanded also to a scalar multiplication of a point. FIG. 18
illustrates the algorithm of the scalar multiplication of a point
implemented by combining the SPA measure implemented
with the A&D-always method and the DPA measure referred
to as the conventional method 1, whereas FIG. 19 illustrates
the algorithm of the scalar multiplication of a point imple-
mented by combining the SPA measure implemented with the
A&D-always method and the DPA measure referred to as the
conventional method 2.

In FIG. 18, the same processes as those in lines 1601 and
1602 of FIG. 16 are executed in lines 1801 and 1802. In line
1803, the function PointMul_ADalways of the scalar multi-
plication of a point using the A&D-always method is
executed with the use of a point A on an elliptic curve as an
input instead of the function ModExp_Adalways of the
modular exponentiation computation using the A&D-always
method in line 1603 of FIG. 16. As a result, a final result
V=dA is obtained and output (line 1804).

In FIG. 19, the same processes as those in lines 1701, 1702
and 1703 of FIG. 17 are executed in lines 1901, 1902 and
1903. In lines 1904, 1905 and 1906, the function PointMu-
1_ADalways of the scalar multiplication of a point using the
A&D-always method is executed with the use of the point A
on the elliptical curve instead of the function ModExp_Ad-
always of the modular exponentiation computation using the
A&D-always method in lines 1704, 1705 and 1706 of FIG.
17. As aresult, A', T and U are respectively obtained. Then, in
line 1907, an addition of a point V:T+U is calculated in stead
of the multiplication process in line 1707 of FIG. 17. With
these calculations in lines 1904, 1905, 1906 and 1907, the
expression (4.7) is calculated, so that a final result V=dA is
obtained and output (line 1908).

<Attack Method Using a Special PA>

As referred to in the above described third comparison
example, it was considered that an encryption processing
device was safe from both SPAs and DPAs by combining the
SPA measure implemented with the A&D-always method
and the DPA measure referred to as the conventional method
1 or 2, and power analyses can be completely prevented.

However, as a result of analyses unique to the inventor, an
attack method that can decrypt the value of a private key d by
using a power waveform even if these measures are taken was
found out. This attack is referred to as a “special PA” in this
specification.

If a measure is not taken against a special PA even when
SPA and DPA measures are taken, information of a private
key d leaks to an attacker. Therefore, a measure against this
attack is considered to be an important challenge.

An attack method using a special PA, which is a challenge
to be solved by the present invention, is described below.

A power waveform when a computation process of a mul-
tiplication (txu(mod n)) performed in a modular exponentia-
tion or that of an addition of a point (T+U) performed in a

5

10

15

20

25

30

35

40

45

50

55

60

65

20

scalar multiplication process is executed depends on a data
value. FIGS. 20A and 20B illustrate a simple case that repre-
sents differences in data values and consumed powers. For
example, if a difference between a waveform of consumed
power of 1x2 (mod n) and that of consumed power of 3x4
(mod n) is generated, these two consumed powers differ due
to a difference between data values in a multiplication. There-
fore, a spike occurs in a differential waveform (FIG. 20A). In
contrast, if a difference between waveforms of consumed
power of 1x2 (mod n) is taken, a differential waveform
becomes flat (FIG. 20B). This is because the consumer pow-
ers are equal. A similar property is satisfied also for an addi-
tion of a point (FIGS. 21A and 21B). Namely, for example, if
a difference between waveforms of consumed powers of
A+2A and 3A+4A, these two consumed powers differ due to
a difference between data values in a multiplication. There-
fore, a spike occurs in a differential waveform (FIG. 21A). In
contrast, if a difference between waveforms of consumed
powers of A+2A, a differential waveform becomes flat (FIG.
21B). This is because the consumed powers are equal.
Although the property illustrated in FIGS. 20A and 20B and
FIGS. 21A and 21B is generally known, a special PA applies
this property to an attack.

<Special PA in a Case where a Private Key d is not Ran-
domized>

A special PA attack against a modular exponentiation com-
putation and a scalar multiplication of a point is described.
Here, a device that takes an SPA measure implemented with
the A&D-always method and does not randomize a private
key d is assumed to be an attack target. An attack against a
device that randomizes a private key d will be described next.

In a special PA, an attacker measures waveforms of con-
sumed powers when a=P is input (FIG. 22(a)) and Q is input
(FIG. 22(b)) as a base of the modular exponentiation, and
generates a difference between the waveforms (FIG. 22(c)).
At this time, a peak portion and a flat portion are identified in
a differential waveform of squaring (S), and the private key d
is decrypted based on pattern information of the peak and the
flat portions (however, since the initial S is always flat, the
attacker ignores it).

Here, a=P and a=Q are values that the attacker intentionally
selects, and P and Q are referred to as a selected message pair.
As a method for setting these values, a plurality of variations
can be considered. With the attack method found out by the
present inventor, P and Q that satisfy P=Q and P*=Q“(mod n)
are selected in RSA and DH, which use a modular exponen-
tiation computation. Note that o is a prime number equal to or
larger than 3. Moreover, in the case of ECC using a scalar
multiplication of a point, P and Q that satisfy aP=aQ and
P=Q are selected.

An attack method, which is a basic form of the special PA,
in acase of =3 is initially described. With this attack method,
in a case of a modular exponentiation computation, a selected
message pair that satisfies P=Q and P*=Q%mod n) is input,
and a differential waveform is generated. As a result, the
differential waveform becomes flat if an exponential part of
the modular exponentiation computation is a multiple of 3,
and the differential waveform exhibits a peak if the exponen-
tial part is not a multiple of 3 as illustrated in FIG. 23 that
corresponds to FIG. 22.

Namely, the attacker can determine whether or not an (i-1)
th bit value d [u-1]||d[u—i+1] from the most significant bit of
dis amultiple of 3 by observing whether a difference of an ith
S from the left either has a spike or is flat. In the example of
FIG. 23, the differential waveform of the second S from the
left has a spike, but that of the third S is flat. In fact, in the

US 9,130,745 B2

21

example of FIG. 23, d[2]=1 being a multiple of 3 for d[2]||d
[1]]|d[0]=(111),, but d[2]||d[1]=(11),=3 being a multiple of 3.
A calculation process of the A&D-always method is a
process for repeatedly calculating a d[u-1]|| . . . ||d[u-i+1]||d
[u—i](mod n), which is obtained by incrementing an exponent
by 1 bit, from the value of a®*~l - - - l4b=+1l16d 1) for all
bits of d. In consideration of this, an association between a
determination of whether or not the value of d[u-1]| . . .
||[d[u—i+1] is a multiple of 3 and a determination of whether or
notd[u-1]||. . . ||[d[u-i+1]||d[u-i] is a multiple of 3 is decided
according to the value of the bit value d[u—i] incremented by
1 bit, and associations between these determination results
are as represented by Table 2 of FIG. 24.
In Table 2, portions that are not a multiple of 3 are enclosed
with a broken line. For example, in Table 2, if d[u-1]|| . . .
||[d[u—-i+1] is a multiple of 3=3k of 3, [u-1]]| . . . [|d[u-i+1]||d
[u—i]=d[u-1]||. . . ||d[u-i+1]||0=3kx2=6k, which is a multiple
of3, when d[u-1]=1, or d[u-1]||d[u-i+1]||d[u-i]=d[u-1]|| . . .
||[d[u—i+1]||x2+1=6k+1, which is not a multiple of 3, when
d[u-i]=1. Also for the other cells in Table 2, a similar analysis
can be performed, and its results are given as Table 2. Here,
considering that an order where white and gray are arranged
can be observed by using a special PA, an attacker can per-
form the following decryption. Namely, if white (multiple of
3) is again observed immediately after white (multiple of 3),
the attacker can decrypt d[u-1]=0. In contrast, if gray(non-
multiple of 3) is observed immediately after white (multiple
of 3), the attacker can decrypt d[u-1]=1.
That is, the attacker can successfully decrypt a bit value of
d based on a pattern of white and gray. Moreover, if attention
is focused on a pattern such that d[u-1]|| . . . ||d[u-i+1] is a
non-multiple of 3 (3k+1) in Table 2, it is proved that a pattern,
which is a multiple of 3 subsequently to the focused pattern,
is limited to d[u-i]=1. Namely, it is proved that a pattern
where white is observed immediately after gray is limited to
d[u-i]=I1.
Decryption of a bit value of d with such an observation is
successful also for other combinations of white and gray. To
explain this, FIG. 25 illustrates the associations of Table 2 as
state transitions.
FIG. 25 illustrates the value of d[u-1]]| . . . ||d[u—-i+1](mod
3) (=0, 1, or 2) in the current state, and also illustrates the state
transitions to a new state d[u-1]| . . . ||d[u-i+1]||d[u-i]
(mod 3) (=0, 1 or 2) by using a bit value of d[u-i] as a
transition condition. A white state represents a multiple of 3,
whereas a gray state represents a non-multiple of 3. Since two
values are present as the value of d[u-i], which is the transi-
tion condition, respectively for the three states in this state
transition diagram, d[u—i] can take 2x3=6 values.
The following 3 patterns among the 6 state transition con-
ditions according to the value of d[u-i] are patterns with
which the value of d[u-i] can be decrypted as stated earlier.
Transition from state 0 (white)—state O (white), d[u—-i]=0
G.1)

Transition from state 0 (white)—»state 1 (gray), d[u-i]=1
(5.2)

Transition from state 1 (gray)—=state 0 (white), d[u-i]=1
(5.3)

Namely, since the 3 patterns among the 6 patterns that can
be taken by the value of d[u-i] can be decrypted, one half of
all bit values of d can be decrypted. The above described
patterns do not include a transition from gray to gray. How-
ever, by using the nature of the transition diagram illustrated
in FIG. 25, some of bit values of d[u-i] can be decrypted also
for the transition from gray to gray. To explain this decryp-
tion, FIG. 26 illustrates results that cover all patterns of tran-
sitions made twice.

10

15

20

25

30

35

40

45

50

55

60

65

22

Since patterns starting in a state 0, 1 or 2 are respectively 4
(transitions of 2 bits=2* patterns), the patterns total to
3x4=12. FIG. 26 respectively illustrates these 12 patterns
along with information that can be observed by an attacker.
The information that can be observed by the attacker is
denoted with symbols. White and gray are denoted with “W”
and “G”, respectively. Among patterns of 3 straight Ws or Gs
illustrated in FIG. 26, 7 patterns other than “GGG” can
uniquely identify a bit. Therefore, a key bit can be uniquely
decrypted. Namely, the 7 patterns among all the 12 patterns
are those with which a key bit can be decrypted. Therefore, at
least 712 of all the bit values can be decrypted. The reason why
an expression “at least” is put is that a decryptable bit length
can be further extended by using the nature such that the
decryption method using the patterns of FIG. 26 can decrypt
2 straight bits by decryption performed once. FIG. 27 illus-
trates this idea.

With the attack method illustrated in FIG. 27, the attacker
initially identifies all the patterns of “G” and “W”. Thereafter,
aprocess for reading patterns of G or W in units of 3 patterns,
and for decrypting a partial key in units of 2 bits by making a
matching between the read patterns and the patterns of FIG.
26 is repeated. At this time, the read in units of 3 patterns is
repeated by being shifted in a way such that the rightmost
three patterns start to be read, next 3 patterns excluding the
rightmost “G” or “W” are read, and subsequent 3 patterns
excluding the rightmost 2 “G” and/or “W” are read. With the
3 patterns other than “GGG”, a 2-bit partial key can be
decrypted. Namely, a 2-bit partial key can be decrypted with
a probability of 712, and is difficult to be decrypted with a
probability of ¥12. In the example illustrated in FIG. 27, a data
sequence read in units of 3 patterns is the first “GGW”,
namely, a partial key=01, the second “GGG”, namely a partial
key=??, the third “WGG”, namely, a partial key=10, and the
fourth “GWG”, namely, a partial key=11. Since the second
pattern is “GGG”, the partial key is unsuccessfully decrypted.
As illustrated in FIG. 27, however, the partial keys are suc-
cessfully decrypted at the first and the third times. Therefore,
the partial key is successtully decrypted at the second time as
bit decryption as the whole of the bit decryption. Namely,
even if a pattern that is difficult to be decrypted at pth time is
encountered with the probability of %2, a low-order bit of a
2-bit partial key at the pth time can be successfully decrypted
if bits of a partial key is successfully decrypted at a (p-1)th
time, and a high-order bit of the 2-bit partial key at the pth
time can be successfully decrypted if bits of a partial key are
successfully decrypted at the (p+1)th time as illustrated in
FIG. 28.

Namely, even when a 2-bit portion is unsuccessfully
decrypted at the pth time, either or both of a low-order bit and
a high-order bit can be successfully decrypted ifa 2-bit partial
key is successfully decrypted at the (p—1)th time or the (p+1)
th time. Here, terms are defined as follows.

Successful decryption of a low-order bit at the pth time as

a result of successful decryption of a partial key at the
(p-1)th time even when a 2-bit partial key is unsuccess-
fully decrypted at the pth time is referred to as low-order
bit follow decryption in this specification.

Successful decryption of a high-order bit at the pth time as

a result of successful decryption of a partial key at the
(p+1)th time even when a 2-bit partial key is unsuccess-
fully decrypted at the pth time is referred to as high-order
bit follow decryption in this specification.

The low-order bit follow decryption and the high-order bit

follow decryption are collectively referred to as follow
bit decryption.

US 9,130,745 B2

23

A probability that the low-order bit follow decryption is
successfully performed, and a probability that the high-order
bit follow decryption is successfully performed are obtained,
so that a probability that a 2-bit value of a partial key even
when a key is unsuccessfully decrypted with the probability
of %12 can be obtained. The probability that the low-order bit
follow decryption is successtully performed is a probability
that a pattern observed at the (p-1)th time is a decryptable
pattern when the pattern GGG is observed at the pth time. The
probability that the high-order bit follow decryption is suc-
cessfully performed is a probability that a pattern observed at
the (p+1)th time is a decryptable pattern when the pattern
“GGG” is observed at the pth time. These probabilities can be
easily obtained based on patterns covered in FIGS. 29 and 30,
and both of the probabilities that the low-order bit follow
decryption and the high-order bit follow decryption are suc-
cessfully performed result in %5. Accordingly, ¥12x%5=V12 of
bit values can be additionally decrypted with the follow
decryptions in addition to 712 of the bit values that can be
uniquely decrypted based on units of 3 patterns. As a whole,
bit values of 712+%12=%12=24 can be decrypted.
As described above, for a device having a function of a
modular exponentiation computation, an attacker can decrypt
% of all bit values of a private key d with a special PA using
a selected message pair of P and Q that satisfy P>~Q® (mod n)
and P=Q. Also for a device having a function of a scalar
multiplication of a point, an attacker can decrypt %5 of all bit
values of the private key d by conducting a similar attack with
a special PA using a selected message pair of P and Q that
satisfy 3P=3Q and P=Q.
Moreover, this attack can be expanded to a special PA using
a selected message pair of P and Q that satisfy P*=Q%(mod n)
and P=Q (or aP=0.Q and P=Q) for a prime number o equal to
orlarger than 3. A fundamental idea of this expansion is based
on a point such that Table 2 of FIG. 24 given for a=3 is
expanded to that for an arbitrary prime number . equal or
larger than 5. Results of this expansion are given as Table 3 of
FIG. 31.
In Table 3, portions where the value of d[u-1]|| . . . [|d[u-
i+1]ord[u-1]||. . .||d[u-i+1]||d[u—i] is not a multiple of o are
enclosed with a broken line similarly to Table 2. Among these
transitions according to the value of d[u-i], the following 3
types are information that can be observed by a attacker, and
transitions with which the value of d[u-i] can be uniquely
decided.
Transition from multiple of a (white)—multiple of o, d[u-
i]=0 (5.4)

Transition from multiple of o (white)—=non-multiple of o
(within a broken line), d[u-i]=1 (5.5)

Transition from non-multiple of o (gray)—multiple of c,
d[u-i]=1 (5.6)

The reason is that all the transitions other than (5.4), (5.5)
and (5.6) are those made from within a broken line frame to
within a broken line frame. Since 3 patterns among all the
transition patterns 2a are transitions with which a key can be
uniquely identified. Therefore, the attacker can decrypt 3/(2/
a) among all the key bits.

A summary of the above described decryption method with
a special PA using P*=Q%(mod n) and P=Q (or aP=cQ and
P=Q)) is represented by Table 4 of FIG. 32. Namely, it is
proved that a ratio of private key bits to be leaked is %5 if the
value of a is 3, or a ratio of private key bits to be leaked is
3/(2/a) if the value of o is equal to or larger than 5.

<Special PA in a Case where a Private Key d is Random-
ized>

The above described PA is a special PA against the SPA
measure implemented with the A&D-always method. A case

30

35

40

45

50

65

24

where a private key d as an attack target is not randomized has
been assumed above. A special PA in a case where the private
key d is randomized is described below. Compared with the
case where the private key is not randomized, cost of an
attacker increases. However, the cost increase can fall within
arealistic time frame, and the same effects as those in the case
where the private key d is not randomized can be produced.

An attack method against a combination of the SPA mea-
sure implemented with the A&D-always method and the DPA
measure implemented with the conventional method 1 is ini-
tially described. With the DPA measure implemented with the
conventional method 1, dj'=d+r#E represented by the expres-
sion (4.1) is used as a replacement for the private key d. FIGS.
33A, 33B, and 33C illustrate a method for generating a dif-
ferential waveform of the special PA in the case where the
private key is randomized. Similarly to FIG. 22, power con-
sumed when the selected message pair of P and Q that satisty
P*=Q“(mod n) and P=Q (or aP=0Q and P=Q) is given is
measured, and a power difference for generating a differential
waveform is generated. A difference from FIG. 22 is that an
attacker needs to devise randomized private keys to be iden-
tical in the cases where P and Q are respectively input.

As illustrated in FIG. 34, the easiest way to make random-
ized exponents match for both P and Q is to repeat, by a
plurality of times, a measurement of power consumed when
Q is given until a randomized private key in the case where P
is given and that in the case where Q is given match.

Considering that the private key is randomized with a
20-bit random number, the power measurement in the case
where Q is given is repeated by 22° times, so that the random-
ized private keys are expected to match. Since 2%° times is
approximately 1,000,000 times, 1,000,000 seconds=
1,000,000/86,400=11.6 days are needed for the power mea-
surements if each power measurement is performed for each
second. Although this power measurement time is not short at
all, the power measurement needed to be repeated for a suc-
cessful attack can be completed within a sufficiently realistic
time frame. For the power measurement, time in units of
seconds, which is proportional to the number of times that the
power measurement is made, is demanded due to a computa-
tion process and a communication time of a low-speed device
such as a smart card or the like. Once the power measurement
has been completed and data of the power measurement has
been transferred to a PC, the high-performance PC can ana-
lyze the data at high-speed. Namely, the above calculated
time (11.6 days) needed to complete the power measurement
is cost in terms of time unchanged for the attacker.

Inthe process fortaking differences by the above described
2%° times, randomized exponents sometimes match or mis-
match for both P and Q. However, whether or not the expo-
nents match can be easily determined based on a difference
between power waveforms. This is because a flat waveform
can possibly appear in all differential waveforms by 1024
times (case of a modular exponentiation computation) or by
160 times (case of a scalar multiplication of a point) if ran-
domized private keys match as illustrated in FIG. 35A. In
contrast, if the randomized private keys mismatch, only start-
ing 20 bits of the bit values of the private keys match as
illustrated in FIG. 35B. Therefore, a peak appears in differ-
ential waveforms subsequent to waveforms of the starting 20
times. Since a distinction can be easily made between these
two types of phenomena, the attacker can obtain a differential
waveform in the case where the randomized private keys
match.

If the attacker can successfully obtain a differential wave-
form when the randomized private keys are the same for both
P and Q, her or she can obtain %5 (0=3) or 3/(2c.) of all bit

US 9,130,745 B2

25

values of by using a method similar to that in the case where
the private key is not randomized. Considering that a result of
the modular exponentiation process using the private key d,/
or that of the scalar multiplication of a point using the private
key d;' matches a computation result in the case where the
privatekey disused, d is akey that is substantially equivalent
to the private key d. Namely, by using the special PA, %5 (a=3)
or3/(2c.) of all the bit values of the private key can be obtained
by using the special PA even when a DPA is used.

The above described method needs the power measure-
ment repeated by 1,000,000 times in order to successfully
conduct the attack. However, by devising the power measure-
ment method, the number of times that the power measure-
ment is repeated can be reduced to 2,000 times. This is imple-
mented by repeating, by a plurality of times, a power
measurement in the case where P is given and in the case
where Q is given, and by generating many differences
between powers for P and Q. By repeating the power mea-
surement by 1,000 times respectively for P and Q (2,000
times in total), the number of possible pairs of power differ-
ences is 1,000x1,000=1,000,000. Therefore, pairs having a
matching 20-bit random number are expected to be included.
In this case, the number of times that the power measurement
is repeated is 2,000 times, and the attack is expected to be
completed within one day.

The above described method is the attack method using the
special PA against the combination of the SPA measure
implemented with the A&D-always method and the DPA
measure implemented with the conventional method 1, and
effects of this method are as represented by Table 4 of FIG.
32.

An attack method using a special PA against a combination
of the SPA measure implemented with the A&D-always
method and the DPA measure implemented with the conven-
tional method 2 is described next. Basically, this method is the
same as that implemented by combining the A&D-always
method and the conventional method 1. Namely, a differential
curve is generated if randomized exponents match, and key
bits are analyzed based on flat and peak patterns. As is proved
from 1704, 1705 and 1706 of FIGS. 17, and 1904, 1905 and
1906 of FIG. 19, randomized exponents in the conventional
method 2 are three types such as r;, d/, and e/, which satisfy
the relationships represented by the expressions (4.4), (4.5)
and (4.8) for the private key d. By using a method similar to
the attack method referred to in the combination of the A&D-
always method and the conventional method 1, %53 (a=3) or
3/(2a) (o is a prime number equal to or larger than 5) of all bit
values of the three types of values such as r;, d ! and e/, which
are used in the modular exponentiation computations or the
scalar multiplications of a point, which are written in 1704,
1705 and 1706 of FIGS. 17 and 1904, 1905 and 1906 of FIG.
19, can be obtained. Since

_
d=d;'xr+e;

based on the expression (4.8), %5 (a=3) or 3/(2c.) (o.is a prime
number equal to or larger than 5) of all the bit values of d can
be obtained.

As described above, by using a special PA, key bit values at
each of the ratios represented by Table 4 of FIG. 32 can be
obtained for all of the SPA measure implemented with the
A&D-always method, the combination of the SPA measure
implemented with the A&D-always method and the DPA
measure implemented with the conventional method 1, and
the combination of the SPA measure implemented with the
A&D-always method and the DPA measure implemented
with the conventional method 2.

10

15

20

25

30

45

50

55

60

65

26

Thus, it became evident that the conventional SPA and
DPA measures are not sufficiently tamper-proof due to the
special PA attack.

Accordingly, the first to the sixth embodiments described
below respectively provide an encryption processing device
and method, which are tamper-resistant also to special PAs in
addition to SPAs and DPAs.

FIG. 37 illustrates an example of a first hardware configu-
ration of the encryption processing device according to the
first to the sixth embodiments.

The encryption processing device 3700 of FIG. 37 includes
a central processing unit (CPU) 3701, a read only memory
(ROM) 3702, arandom access memory (RAM) 3703, a com-
munication circuit 3704, and a communication interface (I/F)
3705. The communication circuit 3704 communicates with
another device via the communication I/F 3705.

The CPU 3701, the ROM 3702, the RAM 3703, and the
communication circuit 3704 are interconnected by a bus
3706. Moreover, the encryption processing device 3700 has a
power supply terminal 3707 and a ground terminal 3708. To
the components within the encryption processing device
3700, a power supply voltage is applied via wires not illus-
trated and the power supply terminal 3707. The components
within the encryption processing device 3700 are connected
also to the ground terminal 3708 via wires not illustrated.

The CPU 3701 loads a program prestored in the ROM 3702
into the RAM 3703, and executes various types of processes
by executing the program while using the RAM 3703 as a
working area. For example, the CPU 3701 executes control
processes represented by flowcharts of FIGS. 42 to 51.

Note that a nonvolatile storage device of another type such
as a flash memory or the like may be used as a replacement for
the ROM 3702. If a rewritable storage device such as a flash
memory or the like is used as a replacement for the ROM
3702, a program may be downloaded into the encryption
processing device 3700 via the communication I/F 3705 and
installed in the encryption processing device 3700.

Additionally, the encryption processing device 3700 can
communicate with another device via the communication I/F
3705. For example, the encryption processing device 3700
may transmit information such as a public key of the local
device to another device via the communication I/F 3705, or
may receive information such as a public key or the like of
another device via the communication I/F 3705.

The communication I/F 3705 may be of an arbitrary type
according to a type of the encryption processing device 3700.
For example, the encryption processing device 3700 may be
a smart card, an L.SI chip embedded in an accessory such as a
printer cartridge or the like, or an LSI chip embedded in a
home appliance. For example, if the encryption processing
device 3700 is a contact-type smart card, the communication
I/F 3705 may include a communication terminal. Alterna-
tively, if the encryption processing device 3700 is a non-
contact type smart card, the communication I/F 3705 may
include an antenna.

The communication circuit 3704 executes an appropriate
process according to a type of the communication I/F 3705
and a communication protocol. For example, the communi-
cation circuit 3704 may execute processes such as digital-to-
analog conversion, analog-to-digital conversion, modulation,
demodulation, encryption, decryption, and the like.

An attacker who conducts a PA attack inputs, to the encryp-
tion processing device 3700, base data in a modular exponen-
tiation computation, data of a point on an elliptic curve in a
scalar multiplication of a point via the communication I/F
3705. Then, power consumed when the encryption process-
ing device 3700 executes a process for the input data is mea-

US 9,130,745 B2

27

sured, so that a private key of the encryption processing
device 3700 is estimated. For example, the attacker measures
the consumed power by connecting a resistor to the power
supply terminal 3707.

FIG. 38 illustrates an example of a second hardware con-
figuration of the encryption processing devices according to
the first to the third embodiments. The encryption processing
device 3710 of FIG. 38 includes an ECC hardware circuit
3711 as a replacement for the CPU 3701 and the ROM 3702.

The encryption processing device 3710 also includes a
RAM 3703, a communication circuit 3704 and a communi-
cation I/F 3705, which are similar to those of the encryption
processing device 3700 illustrated in FIG. 37. In the encryp-
tion processing device 3710, the ECC hardware circuit 3711,
the RAM 3703, and the communication circuit 3704 are
interconnected by a bus 3706. Moreover, the encryption pro-
cessing device 3710 also includes a power supply terminal
3707 and a ground terminal 3708, which are similar to those
of the encryption processing device 3700 illustrated in FIG.
37.

In the encryption processing device 3710, the ECC hard-
ware circuit 3711 executes the control processes represented
by the flowcharts illustrated in FIGS. 42 to 51 as a replace-
ment for the CPU 3701 that reads and executes the program
from the ROM 3702. The ECC hardware circuit 3711 may be,
for example, an application specific integrated circuit
(ASIC), or at least part of the ECC hardware circuit 3711 may
be implemented with a field programmable gate array
(FPGA). Also the ECC hardware circuit 3711 is connected to
the power supply terminal 3707 and the ground terminal 3708
with wires not illustrated.

Depending on an embodiment, the encryption processing
device may include the CPU 3701 as a general-purpose pro-
cessor, the ROM 3702 of FIG. 37 for storing the program
executed by the CPU 3701, and the ECC hardware circuit
3711 of FIG. 38 as a coprocessor. The CPU 3701 may execute
some of the control processes represented by the flowcharts of
FIGS. 42 to 51, and the ECC hardware circuit 3711 may
execute the rest of the control processes. Also in this case, the
encryption processing device includes the RAM 3703, the
communication circuit 3704 and the communication I/F 3705
similarly to the configurations of FIGS. 37 and 38.

FIG. 39 illustrates a configuration of functions common to
the encryption processing devices according to the first to the
third embodiments. The encryption processing device 3900
illustrated in FIG. 39 can be implemented with the hardware
illustrated in FIG. 37 or 38.

In the configuration of the functions, which takes a mea-
sure against special PAs, in the first to the third embodiments
illustrated in FIG. 39, a computation is performed with the use
of, as a new base, a result obtained by multiplying a base in a
modular exponentiation computation by a constant.

In FIG. 39, a base a and a modulus n are input to a constant
multiplier 3901, which reads a measure constant C(ct) from a
measure constant storage unit 3902. Then, the constant mul-
tiplier 3901 initially calculates a new base b=a“‘® (mod n) or
b=a"(mod n) by multiplying the base a by C(ct) or r'(=C(ct)x
random number r) in order to perform a modular exponentia-
tion computation (a?(mod n). However, the measure constant
C(a) stored in the measure constant storage unit 3902 is a
constant set according to an intensity of an attack of an
assumed special PA. Specifically, this constant is given as a
product of all values of a prime number o for generating a
selected message pair P“=Q“(mod n). For example, if an
attack of =3 is assumed and prevented, C(a)=3. For
example, if an attack of =3 and a=5 is assumed and pre-
vented, C(a)=3x5=15. For example, an attack of a=3 and

10

15

20

25

30

35

40

45

50

55

60

65

28

a=7 is assumed and prevented, C(ct)=3x7=21. For example,
if an attack of a=3, a=5 and a=7 is assumed and prevented,
C(a)=3x5x7=105.

By assuming many types of an attack and setting C(a),
security can be improved. However, since an overhead of
calculation processing time is proportional to a bit length of
C(a), C(v) is set depending on a tradeoff between security
and the processing time. As represented by Table 4 of FIG. 32,
the ratio of leaked key bits decreases with an increase in a.
Therefore, it is appropriate that C(ct) is set to the product of all
prime numbers equal to or smaller than 7.

In FIG. 39, a private key converter 3904 converts a private
key d stored in a private key storage unit 3903 into a private
key d'. The private key d' is computed as a quotient obtained
by dividing the private key d by the measure constant C(a) or
r' (=C(a)xrandom number).

A correction key generator 3907 generates a correction key
d" from the private key d stored in the private key storage unit
3903. The correction key d" is computed as a remainder
obtained by dividing the private key d by the measurement
constant C(at) or r' (=C(a)xrandom number r).

A modular exponentiation computing unit 3905 performs a
modular exponentiation computation u=a?"(mod n) for the
private key d' output by the private key converter 3904 with
the use of the new base b generated by the constant multiplier
3901, and the modulus n. This computation is performed, for
example, with the A&D-always method illustrated in FIG. 12.

A modular exponentiation computing unit 3906 performs a
modular exponentiation computation u=a?"(mod n) for the
correction key d" output by the correction key generator 3907
with the use of the input base a and modulus n, and outputs a
correction value u.

Computation results t and u output by the modular expo-
nentiation computing units 3905 and 3906 are input to a
correction computing unit 3908, which performs a correction
computation of a multiplication txu (mod n), and outputs a
result equivalent to a final result of the modular exponentia-
tion computation a?(mod n).

Here, the private key converter 3904 and the correction key
generator 3907 calculate and output the private key d' and the
correction key d", which satisfy an expression (6.1).

d=c(a)xd"+d" (6.1)

With this relational expression, the modular exponentiation
computation value a*(mod n) of the encryption process can be
represented as an expression (6.2).

v = a?(modn)
_ a(c(a)d’+d”)(m0dn)

= (ac(a))d/ xa?” (modn)

By deciding the measure constant C(ct) based on the expres-
sion (6.2) so that the expression (6.1) is satisfied, it is proved
that the modular exponentiation computation value a%(mod n)
of the encryption process can be surely output with the con-
figuration of FIG. 39.

Additionally, the private key converter 3904 and the cor-
rection key generator 3907 can be also configured to calculate
and output the private key d' and the correction key d", which
satisfy an expression (6.3), by introducing the random num-
ber r to the measure constant C(ct).

US 9,130,745 B2

29

d=(cl@)xr)xd +d” 6.3)

=rd +d”

With this relational expression, the modular exponentia-
tion computation value a?(mod n) of the encryption process
can be represented as an expression (6.4).

v = a%(modn) (6.4)

- a(/d’+d”)(m0dn)
= (a’l)d xa?” (modn)
=¥ xa?’ (modn)

= r X u(modr)

With the expression (6.4), the measure constant C(a) is
decided so that the expression (6.3) is satisfied, and the value
r'is used as areplacement for the measure constant C(ct) in the
constant multiplier 3901, the private key converter 3904 and
the correction key generator 3907, which are illustrated in
FIG. 39. This proves that the modular exponentiation com-
putation value a“(mod n) of the encryption process can be
surely output.

With the measures according to the first to the third
embodiments based on the configuration of FIG. 39, the fol-
lowing process is executed. Namely, in the modular exponen-
tiation computation for the encryption process, an input value
a is not used as a base, and a value b=a“““(mod n) or b=a""
(mod n), which is obtained by multiplying the input value a by
the measure constant C(a) or r'(=C(a)xrandom number r) set
according to the above described procedure, is used as a new
base. The new base b when each of selected messages P and
Q is input is as follows.

PY(mod #) (6.5)

0“(mod #) (6.6)

For the assumed «, the expressions (6.5) and (6.) always
become equal. This is because the equation P*=Q%(mod n) is
satisfied and C(a) is a common factor of all values of the
assumed c.. Since the expressions (6.5) and (6.6) are results
obtained by multiplying both sides of P*=Q%*(mod n) by an
integer, these expressions become equal.

Even if a power difference between modular exponentia-
tion computations where bases are the same is generated, it is
difficult for an attacker to obtain significant information. This
is because the bases are the same for both P and Q as illus-
trated in FIG. 41 (FIGS. 40A and 40B), and a differential
waveform always becomes flat even if a difference between
powers is generated (FIG. 40C). Therefore, it is difficult for
the attacker to obtain significant information for decrypting
key bits.

With the modular exponentiation computation performed
by the modular exponentiation computing unit 3906, the
input base a is used unchanged. Therefore, this encryption
processing device is vulnerable to special PAs. However,
since a bit length of the correction key d" is made much
shorter than that of the private key d, influences of a special
PA attack can be minimized. The bit length of d" relative to d
varies depending on an embodiment. Details will be
described in the first to the third embodiments.

FIG. 41 illustrates a configuration of functions common to
encryption processing devices according to fourth to sixth

10

15

20

25

30

35

40

45

50

55

60

65

30

embodiments. The encryption processing device 4100 illus-
trated in FIG. 41 can be implemented with the hardware
configuration illustrated in FIG. 37 or 38.

In the configuration of the functions, which takes a mea-
sure against special PAs, in the fourth to the sixth embodi-
ments according to the present invention illustrated in FIG.
41, a computation is performed by using a result obtained by
multiplying a point on an elliptic curve in a scalar multipli-
cation of a point by a constant as a point on a new elliptic
curve.

The configuration of FIG. 41 can be basically implemented
by replacing the modular exponentiation a*(mod n) and the
multiplication txu (mod n), which are illustrated in FIG. 39,
respectively with a scalar multiplication of a point dA and an
addition of a point T+U. This is evident from the associations
illustrated in FIG. 1.

In FIG. 41, a point A on an elliptic curve is input to a
constant multiplying unit 4101, which reads a measure con-
stant C(a) from a measure constant storage unit 4102. Then,
the constant multiplying unit 4101 initially calculates a point
B=C(ct)A or B=r'A on a new elliptic curve by multiplying the
point A by C(a) or r'(=C(a)xrandom number r) in order to
calculate the scalar multiplication of a point dA. However, the
measure constant C(a) stored in the measure constant storage
unit 4102 is selected based on criteria similar to those in the
case of FIG. 39.

In FIG. 41, a private key converter 4104 converts a private
key d stored in a private key storage unit 4103 into a private
key d'. The private key d' is computed as a quotient obtained
by dividing the private key d by the measure constant C(a) or
r'(=C(a)xrandom number r).

A correction key generator 4107 generates a correction key
d" from the private key d stored in the private key storage unit
4103. The correction key d" is computed as a remainder
obtained by dividing the private key d by the measure con-
stant C(a) or the r'(=C(a)xrandom number r).

A scalar multiplier of a point 4105 performs a scalar mul-
tiplication ofa point T=d’B for the private key d' output by the
private key converter 4104 with the use of the new point B
generated by the constant multiplying unit 4101. This calcu-
lation is performed, for example, with the A&D-always
method illustrated in FIG. 15.

A scalar multiplier of a point 4106 performs a scalar mul-
tiplication of a point U=d“A for the correction key d”” output
by the correction key generator 4107 with the use of the input
point A, and outputs a correction value u.

Computation results t and u output by the scalar multipliers
of'a point 4105 and 4106 are input to a correction computing
unit 4108, which performs a correction computation for an
addition T+U, and outputs a result equivalent to a final result
dA of the scalar multiplication of a point.

Here, the private key converter 4104 and the correction key
generator 4107 calculate and output the private key d' and the
correction key d", which satisfy the expression (6.1) in the
case of FIG. 39. With this relational expression, the value dA
of the scalar multiplication of a point in the encryption pro-
cess can be represented as an expression (6.7).

V= dA = (c(a) xd’ +d")A 6.7)
=d c(@)A+d"A
=d'B+d"A

=T+U

US 9,130,745 B2

31

With the expression (6.7), the measure constant C(a) is
decided so that the expression (6.1) is satisfied. As a result, it
is proved that the value dA of the scalar multiplication of a
point in the encryption process can be surely output with the
configuration of FIG. 41.

Additionally, the private key converter 4104 and the cor-
rection key generator 4107 can be also configured to calculate
and output the private key d' and the correction key d", which
satisfy the expression (6.3) in the case of FIG. 39, by intro-
ducing the random number r to the measure constant C(ct).
With this relational expression, the value dA of the scalar
multiplication of a point in the encryption process can be
represented as an expression (6.8).

v=dA = ((cl@)xr)xd +d"A 6.8)

=d'(cle)xrA+d"A
=d’'B+d"A

=T+U

With the expression (6.8), the measure constant C(a) is
decided so that the expression (6.3) is satisfied, and the value
r'is used as areplacement for the measure constant C(ct) in the
constant multiplying unit 4101, the private key converter
4104 and the correction key generator 4107, which are illus-
trated in FIG. 41. As a result, the value dA of the scalar
multiplication of a point in the encryption process can be
surely output.

With the measures according to the fourth to the sixth
embodiments based on the configuration of FIG. 41, the fol-
lowing process is executed. Namely, in the scalar multiplica-
tion of a point for the encryption process, an input value A is
not used as a point on an elliptic curve, and a value B=C(a)A
or B=r'A, which is obtained by multiplying the point A by the
measure constant C(a) or ' (=C(a)xrandom number r) set
according to the above described procedure, is used as a point
on a new elliptic curve. The new point B when each of the
selected messages P and Q is input is as follows.

C(a)P (6.9)

)@

For an assumed o, the expressions (6.9) and (6.10) always
become equal. This is because the equation aP=aQ is satis-
fiedand C(ct) is a common factor for all values of the assumed
a. The expressions (6.9) and (6.10) are results obtained by
multiplying both of sides of aP=cQ by an integer, so that
these expressions become equal.

As aresult, it is difficult for an attacker to obtain significant
information even if he or she generates a power difference
between modular exponentiation computations where bases
are the same, according to a principle similar to that in the
case of FIG. 39. This is because the bases are the same for
both P and Q, and a differential waveform always becomes
flat even if their difference is generated, so that it is difficult
for the attacker to obtain significant information for decrypt-
ing key bits.

Similarly to the case of FIG. 29, the input point A on the
elliptic curve is used unchanged in the scalar multiplication of
a point performed by the scalar multiplier of a point 4106.
Therefore, this encryption processing device is vulnerable to
special PAs. However, since the bit length of the correction
key d" is made much shorter than that of the private key d,
influences of an attack using a special PA can be minimized.

(6.10)

10

15

20

25

30

35

40

45

50

55

60

65

32

The bit length of d" relative to d varies depending on an
embodiment. Details will be described in the fourth to the
sixth embodiments.

In FIGS. 39 and 41, the constant multiplier 3901, the con-
stant multiplying unit 4101, the private key converters 3904
and 4104, the modular exponentiation computing units 3905
and 3906, the scalar multipliers of a point 4105 and 4106, the
correction key generators 3907 and 4107, and the correction
computing units 3908 and 4108 can be implemented as the
following configurations. Namely, these components may be
processes executed by the CPU 3701 of FIG. 37, those
executed by the ECC hardware circuit 3711 of FIG. 38, or
those executed by a combination of the CPU 3701 and the
ECC hardware circuit 3711. In this case, a program for
executing these processes can be stored and executed in the
ROM 3702 or the RAM 3703, which is illustrated in FIG. 37
or 38. Moreover, the measure constant storage units 3902 and
4102, and the private key storage units 3903 and 4103 can be
stored, for example, in the ROM 3702 or the RAM 3703,
which is illustrated in FIG. 37 or 38.

In FIG. 39 or 41, the base a, the modulus n, and the point A
may be given from a device other than the encryption pro-
cessing device 3900 or 4100 to the encryption processing
device. For example, the base a and the point A may be a
public key of an external device. The public key of the exter-
nal device is sometimes notified, for example, from the exter-
nal device to the encryption processing device 3900 or 4100
in order for a DH key agreement, or sometimes notified from
the external device to the encryption processing device 3900
or 4100 in order for authentication attempted with a DSA.

Ifthe base a, the modulus n, and the point A are given from
a device other than the encryption processing device 3900 or
4100 to the encryption processing device, they are obtained
by the communication I/F 3705 and the communication cir-
cuit 3704.

The correction computing unit 3908 of FIG. 39 or the
correction computing unit 4108 of FIG. 41 may transmit a
computation result to another device, may execute a process
for authentication attempted with a DSA, or may execute a
process for a DH key agreement. Depending on circum-
stances, the computation result may be externally output by
using the communication circuit 3704 and the communica-
tion I/F 3705. This is, for example, a case where the encryp-
tion processing device 3900 or 4100 is included in an acces-
sory (such as a printer cartridge or the like) authenticated by
a host (such as a printer or the like).

A first embodiment that refers to a specific process of the
encryption processing device 3900 illustrated in FIG. 39 is
described next. FIG. 42 is a flowchart illustrating a control
process of the first embodiment. The process of this flowchart
is described below.

A quotient and a remainder are calculated by dividing a
private key d generated preliminarily (step 4200) by C(a),
and respectively given to d' and d" (step 4202). This is a
process based on the expressions (6.1) and (6.2), and corre-
sponds to the functions of the private key converter 4104 and
the correction key generator 3907.

A result a° (mod n) obtained by multiplying the base a
by C(a) is given to b (step 4203). This corresponds to the
function of the constant multiplier 3901.

A modular exponentiation computation using b and d' as a
base and an exponent is performed, and a result is givento t as
t=b*’(mod n) (step 4202). This corresponds to the function of
the modular exponentiation computing unit 3905.

By performing the modular exponentiation computation
using a and d" as a base and an exponent, a correction value

US 9,130,745 B2

33

u=a?"(mod n) is generated (step 4205). This corresponds to
the function of the modular exponentiation computing unit
3906.

v=txu(mod n) is calculated based on t and the correction
value u (step 4206). This corresponds to the function of the
correction computing unit 3908.

Lastly, v is output as a calculation result a?(mod n) (step
4207).

In step 4205, the modular exponentiation computation
using the base a unchanged is performed, and this process is
vulnerable to special PAs. However, an exponent used in this
modular exponentiation is d"=d(mod C(a)), and a bit length
of'this exponent is equal to a bit length (log,C(a)) of C(av). If
C(a)=3x5x7=105 is used, a bit length exposed to a special PA
attack is only log,105=7 bits, and can be reduced to be short
enough to be able to ignore the influences of the special PA
compared with the bit length (1024 bits or more) of the entire
private key.

FIG. 43 is a flowchart illustrating details (No. 1) of the
modular exponentiation computation process executed in
steps 4203, 4204, and 4205 of FIG. 42. The process of this
flowchart is based on the algorithm of the modular exponen-
tiation computation process using the A&D-always method
illustrated in FIG. 12.

In step 4300, the input values illustrated in FIG. 12 are
input.

step 4301 corresponds to line 1201 of FIG. 12.

steps 4302, 4306, and 4307 correspond to the loop process
of the for statement in 1202 of FIG. 12.

step 4303 corresponds to line 1203 of FIG. 12, and

performs squaring.

step 4304 corresponds to line 1204 of FIG. 12, and

performs a multiplication.

step 4305 corresponds to line 1205 of FIG. 12.

steps 4308 and 4309 correspond to line 1207 of FIG. 12.

In this flowchart, a computation pattern of squaring (4303)
and a multiplication (4304) is always made regular regardless
of the value of an exponent d.

FIG. 44 is a flowchart illustrating details (No. 2) of the
modular exponentiation computation process executed in
steps 4203, 4204, and 4205 of FIG. 42. In the flowchart of
FIG. 43, the modular exponentiation computation is per-
formed while incrementing the exponent d by 1 bit. In con-
trast, in the flowchart of FIG. 44, a k-bit table represented by
w[i]=ai(mod n) (i=0, 1, . . ., 2¥~1) is calculated with a loop
control process insteps 4404 and 4405 after an initialization
process insteps 4401 and 4402 (step 4403).

Then, after an initialization process in steps 4406 and 4407,
the modular exponentiation computation is performed while
incrementing the exponent d by k bits with a loop control
process in steps 4410 and 4411. Similarly to the flowchart of
FIG. 43, a computation pattern of squaring (step 4408) and a
multiplication (step 4409) is always made regular regardless
of the value of the exponent d.

The second embodiment that refers to a specific process of
the encryption processing device 3900 illustrated in FIG. 39
is described next. FIG. 45 is a flowchart illustrating a control
process of the second embodiment. The process of this flow-
chart is described below.

In FIG. 45, the same processes as those in the first embodi-
ment of FIG. 42 are denoted with the same numbers.

The control process of the second embodiment is different
from that of the first embodiment in that a process for calcu-
lating a quotient and a remainder by dividing d by C(ct) is
executed when a private key d is generated in a preliminary
process, and the quotient and the remainder are respectively
given to d' and d" (step 4500). This is a process based on the

20

25

30

35

40

45

34

expressions (6.1) and (6.2), and corresponds to the functions
of the private key converter 3904 and the correction key
generator 3907, which are illustrated in FIG. 39. This process
is executed as a preliminary process, thereby eliminating the
need for executing a division process each time the modular
exponentiation computation is performed.

Processes in steps 4201 and 4203 to 4207 of FIG. 45 are the
same as those in the first embodiment of FIG. 42.

In step 4205, the number of bits vulnerable to a special PA
is only 7 bits or so similarly to the case of the first embodi-
ment.

The third embodiment that refers to a specific process of
the encryption processing device 3900 illustrated in FIG. 39
is described next. FIG. 46 is a flowchart illustrating a control
process of the third embodiment. The process of this flow-
chart is described below.

In FIG. 46, the same processes as those of the first embodi-
ment illustrated in FIG. 42 are denoted with the same num-
bers.

The control process of the third embodiment is different
from that of the first embodiment in that a random number r is
added to the measure constant C(a).

Initially, a private key d is generated preliminarily (step
4200), and abase a and a modulus n are input (step 4201).

Then, a 20-bit random number r is generated (step 4601).

Next, r'=C(a)xr is computed based on the expression (6.3)
(step 4602).

Then, a quotient and a remainder of the private key d
generated preliminarily are calculated by dividing the private
key d by r', and respectively given to d' and d" (step 4603).
This is a process based on the expressions (6.3) and (6.4), and
corresponds to the functions of the private key converter 4104
and the correction key generator 3907.

A result a”(mod n) obtained by multiplying the base a by r'
is given to b (step 4604). This corresponds to the function of
the constant multiplier 3901.

Thereafter, similarly to the case of FIG. 42, processes in
steps 4204, 4205, 4206, and 4207 are sequentially executed,
and a final value v=a“(mod n) of the modular exponentiation
computation is output according to the control process
executed based on the expression (6.4).

In step 4205, the modular exponentiation computation
using the base a unchanged is performed. This process is
vulnerable to special PAs. Its bit length is longer than that in
the first or the second embodiment by a bit length of the
random number r, and results in (bit length of C(a))+
20(=log,C(c)+20). If C(a)=3x5x7=105, a bit length exposed
to a special PA attack is only 20+10g,105=27 bits, and can be
made short enough to be able to ignore the influences of the
special PA attack compared with the bit length (1024 bits or
more) of the entire private key.

Compared with the first or the second embodiment, a bit
length exposed to a special PA attack increases. However,
since all exponents of the modular exponentiation computa-
tion in steps 4204, 4205, and 4206 are randomized, the third
embodiment has an advantage that safety from DPAs is high.

The process itself in step 4603 in the third embodiment is
similar to that represented by the expressions (4.4) and (4.5)
of the above described conventional method 2. However, the
third embodiment has a characteristic such that a process
r'=rxC(a) in step 4602 for multiplying the random number r
generated in step 4601 by C(a) is executed, whereas the
conventional method 2 does not execute a process corre-
sponding to that of the third embodiment. A difference in this
characteristic causes a difference in effects. Namely, in the
third embodiment, the base b is given as a value obtained by
multiplying a by r' to r', which is an integral multiple of C(c),

US 9,130,745 B2

35

in the third embodiment, so that a process safe also from
special PAs can be implemented. In contrast, with the con-
ventional method 2, the generated random number r is used
unchanged, so that the base b is given as a value obtained by
multiplying a by r. This r is a random number, and is not
always a multiple of C(a). Therefore, a special PA is success-
fully conducted with a significantly high probability of (®(C
(a))/C(a)). D(x) is called Euler’s function, and is calculated
by a product of values obtained by subtracting 1 from all
prime numbers into which x is factorized. For example,
D(3)=3-1=2, D(3x5)=(3-1)x(5-1)=2x4=8, and P(B3x5x7)=
(B=1D)x(5-1)x(7-1)=2x4x6=48.

The third embodiment has a characteristic of having high
tamper-resistance to special PAs.

The fourth embodiment that refers to a specific process of
the encryption processing device 4100 illustrated in FIG. 41
is described next. FIG. 47 is a flowchart illustrating a control
process of the fourth embodiment. The process of this flow-
chart is described below.

A quotient and a remainder are calculated by dividing the
private key d generated preliminarily (step 4700) by C(a),
and respectively given to d' and d" (step 4702). This is a
process based on the expressions (6.1) and (6.7), and corre-
sponds to the functions of the private key converter 4104 and
the correction key generator 4107.

A result C(a)A obtained by multiplying a point A by C(v)
is given to B (step 4703). This corresponds to the function of
the constant multiplying unit 4101.

A scalar multiplication of a point for multiplying B by d' is
performed, and T=d'B is given to T (step 4704). This corre-
sponds to the function of the scalar multiplier 4105 of a point.

A correction value U=d"A is generated by performing the
scalar multiplication of a point for multiplying the point A by
d" (step 4705). This corresponds to the function of the scalar
multiplier of a point 4106.

V=T+U is calculated from T and the correction value U
(step 4706). This corresponds to the function of the correction
computing unit 4108.

Lastly, V is output as a calculation result dA (step 4707).

In step 4705, a scalar multiplication of a point using the
point A unchanged is performed. This process is vulnerable to
special PAs. However, an exponent used in this modular
exponentiation is d"=d(mod C(c)), and a bit length of this
exponent is equal to the bit length (log,C(a)) of C(a). If
C(a)=3x5x7=105 is used, a bit length exposed to a special PA
attack is only log,105=7 bits, and can be made small enough
to be able to ignore the influences of the special PA attack
compared with the bit length (1024 bits or more) of the entire
private key.

FIG. 48 is a flowchart illustrating details (No. 1) of the
process of the scalar multiplication of a point executed in
steps 4703, 4704, and 4705 of FIG. 47. The process of this
flowchart is based on the algorithm of the scalar multiplica-
tion of a point using the A&D-always method illustrated in
FIG. 15.

In step 4800, the input values illustrated in FIG. 15 are
input.

step 4801 corresponds to line 1501 of FIG. 15.

steps 4802, 4806, and 4807 correspond to the loop process
of the for statement in line 1502 of FIG. 15.

step 4803 corresponds to line 1503 of FIG. 15, and

performs doubling.

step 4804 corresponds to line 1504 of FIG. 15, and

performs an addition.

step 4805 corresponds to line 1505 of FIG. 15.

steps 4808 and 4809 correspond to line 1507 of FIG. 15.

15

20

25

35

40

45

50

55

65

36

In this flowchart, a computation pattern of doubling (4803)
and an addition (4804) is always made regular regardless of
the scalar value d.

FIG. 49 is a flowchart illustrating details (No. 2) of the
scalar multiplication process of a point executed in steps
4703, 4704 and 4705 of FIG. 47. In the flowchart of FIG. 48,
the scalar multiplication of a point is performed while incre-
menting the exponent d by 1 bit. In contrast, in the flowchart
of FIG. 49, a k-bit table represented by w[i]=iA(mod n) (i=0,
1,...,2"1)is calculated with a loop control process insteps
4094 and 4095 after an initialization process insteps 4901 and
4902 (step 4903).

Then, the scalar multiplication of a point is performed
while incrementing the exponent d by k bits with a loop
control process in steps 4910 and 4911 after an initialization
process in steps 4906 and 4907. Similarly to the flowchart of
FIG. 48, a computation pattern of doubling (step 4908) and an
addition (step 4909) are always made regular regardless of the
value of the exponent d.

The fifth embodiment that refers to a specific process of the
encryption processing device 4100 illustrated in FIG. 41 is
described below. FIG. 50 is a flowchart illustrating a control
process of the fitth embodiment. The process of this flowchart
is described below.

In FIG. 50, the same processes as those in the fourth
embodiment of FIG. 47 are denoted with the same numbers.

The control process of the fifth embodiment is different
from that of the fourth embodiment in that a process for
calculating a quotient and a remainder by dividing a private
key d by c(a) is executed at a point when the private key d is
generated in a preliminary process, and the quotient and the
remainder are respectively giventod'and d" (step 5000). This
is a process based on the expressions (6.1) and (6.7), and
corresponds to the functions of the private key converter 4104
and the correction key generator 4107 of FIG. 41. This pro-
cess is executed as a preliminary process, thereby eliminating
the need for executing a division process each time the scalar
multiplication of a point is performed.

Processes in steps 4701 and 4703 to 4707 of FIG. 5 are the
same as those of the fourth embodiment illustrated in FIG. 47.

In step 4705, the number of bits vulnerable to a special PA
is only 7 bits or so similarly to the case of the fourth embodi-
ment.

The sixth embodiment that refers to a specific process of
the encryption processing device 4100 illustrated in FIG. 41
is described below. F1G. 51 is a flowchart illustrating a control
process of the sixth embodiment. The process of this flow-
chart is described below.

In FIG. 51, the same processes of the fourth embodiment
illustrated in FIG. 47 are denoted with the same numbers.

The control process of the sixth embodiment is different
from that of the fourth embodiment in that a random number
r is added to the measure constant C(cv).

Initially, a private key d is generated preliminarily (step
4700), and a point A is input (step 4701).

Then, a 20-bit random number r is generated (step 5101).

Next, r'=c(a)xr is computed based on the expression (6.3)
(step 5102).

Then, a quotient and a remainder are calculated by dividing
the private key d generated preliminarily by r', and respec-
tively givento d' and d" (step 5103). This is a process based on
the expressions (6.3) and (6.8), and corresponds to the func-
tions of the private key converter 4104 and the correction key
generator 4107.

A result r'A obtained by multiplying the point A by r' is
given to B (step 5104). This corresponds to the function of the
constant multiplying unit 4101.

US 9,130,745 B2

37

Thereafter, similarly to the case of FIG. 47, processes in
steps 4704, 4705, 4706, and 4707 are sequentially executed,
and a final value dA of the scalar multiplication is output
according to the control process executed based on the
expression (6.8).

In step 4705, the scalar multiplication of a point using the
point A unchanged is performed. This process is vulnerable to
special PAs. Its bit length is longer by the bit length of the
random number r than that of the first or the second embodi-
ment, and (bit length of C(c))+20(=log,C(c)+20). If C(ev)
=3x5x7=105 is used, a bit length exposed to a special PA
attack is only 20+log,105=27 bits. Compared with the bit
length (1024 bits or more) of the entire private key, the bit
length can be made short enough to be able to ignore the
influences of the special PA attack.

Compared with the first or the second embodiment, the
sixth embodiment has an advantage that safety from DPAs is
high since all exponents of the scalar multiplication process
of a point in steps 4704, 4705 and 4706 are randomized
although a bit length exposed to a special PA attack becomes
long.

Similarly to the third embodiment, the process itselfin step
5103 of the sixth embodiment is similar to the process repre-
sented by the expressions (4.4) and (4.5) of the above
described conventional method 2. The sixth embodiment has
a characteristic such that the process r'=rxC(a), in step 5102,
for multiplying the random number r generated in step 5101
by C(c) is executed, whereas the conventional method 2 does
not execute a process corresponding this process of the sixth
embodiment. A difference in this characteristic causes a dif-
ference in effects. Namely, the point B is given to r', which is
an integral multiple of C(a), as a value obtained by multiply-
ing A by r', whereby a process also safe from special PAs can
be implemented.

All examples and conditional language provided herein are
intended for pedagogical purposes of aiding the reader in
understanding the invention and the concepts contributed by
the inventor to further the art, and are not to be construed as
limitations to such specifically recited examples and condi-
tions, nor does the organization of such examples in the
specification relate to a showing of the superiority and infe-
riority of the invention. Although one or more embodiments
of the present invention have been described in detail, it
should be understood that the various changes, substitutions,
and alterations could be made hereto without departing from
the spirit and scope of the invention.

What is claimed is:

1. An encryption processing device, comprising:

a constant multiplier, to which a first base a and a modulus

n are input, configured to perform a modular exponen-
tiation computation for the modulus n by using a speci-
fied constant as an exponent for the first base a, and to
output a computation result as a second base b;

a private key converter, to which a first private key d is
input, configured to compute a second private key d' as a
quotient obtained by dividing the first private key d by
the specified constant;

a correction key generator configured to generate a correc-
tion key d" as a remainder obtained by dividing the first
private key d by the specified constant;

a first modular exponentiation computing unit configured
to perform a modular exponentiation computation for
the modulus n by using the second private key d' as an
exponent for the second base b, and to output a compu-
tation result;

a second modular exponentiation computing unit config-
ured to perform a modular exponentiation computation

10

15

20

25

30

35

40

45

50

55

60

65

38

for the modulus n by using the correction key d" as an
exponent for the first base b, and to output a computation
result as a correction value; and

a correction computing unit, to which the computation
result output by the first modular exponentiation com-
puting unit and the correction value output by the second
modular exponentiation computing unit are input, con-
figured to perform a correction computation, which is a
multiplication process based on the modulus n, and to
output a computation result of the correction computa-
tion as an encryption process result obtained when the
modular exponentiation computation for the modulus n
is executed by using the first private key d as an exponent
for the first base a.

2. An encryption processing device, comprising:

a constant multiplier, to which a point A on a first elliptic
curve is input, configured to perform a scalar multipli-
cation of a point by using a specified constant as a scalar
value for the point A on the first elliptic curve, and to
output a computation result as a point B on a second
elliptic curve;

a private key converter, to which a first private key d is
input, configured to compute a second private key d' as a
quotient obtained by dividing the first private key d by
the specified constant;

a correction key generator configured to generate a correc-
tion key d" as a remainder obtained by dividing the first
private key d by the specified constant;

a first scalar multiplier of a point configured to perform a
scalar multiplication of a point by using the second
private key d' as a scalar value for the point B on the
second elliptic curve, and to output a computation result;

a second scalar multiplier of a point configured to perform
a scalar multiplication of a point by using the correction
key d" as a scalar value for the point A on the first elliptic
curve, and to output a computation result as a correction
value; and

a correction computing unit, to which the computation
result output by the first scalar multiplier of a point and
the correction value output by the second scalar multi-
plier of a point are input, configured to perform a cor-
rection computation, which is a process for adding a
point on an elliptic curve, and to output a computation
result of the correction computation as an encryption
process result obtained when the scalar multiplication of
a point is performed by using the first private key d as a
scalar value for the point A on the first elliptic curve.

3. The encryption processing device according to claim 1,

wherein

the specified constant has a value using one or more prime
numbers as a common factor.

4. The encryption processing device according to claim 3,

wherein

the specified constant has a value using a specified random
number as a common factor.

5. The encryption processing device according to claim 1,

wherein

the private key converter computes the second private key
d' and the correction key generator generates the correc-
tion key d", preliminary to an encryption process.

6. An encryption processing method used by a computer,

the encryption processing method comprising:

inputting a first base a and a modulus n, performing a
modular exponentiation computation for the modulus n
by using a specified constant as an exponent for the first
base a, and outputting a computation result as a second
base b;

US 9,130,745 B2

39

inputting a first private key d, and computing a second
private key d' as a quotient obtained by dividing the first
private key d by the specified constant;

generating a correction key d" as a remainder obtained by
dividing the first private key d by the specified constant;

performing a first modular exponentiation computation for
the modulus n by using the second private key d' as an
exponent for the second base b, and outputting a com-
putation result;

performing a second modular exponentiation computation
for the modulus n by using the correction key d" as an
exponent for the first base b, and outputting a computa-
tion result as a correction value; and

inputting the computation result of the first modular expo-
nentiation, and the correction value, which is the com-
putation result of the second modular exponentiation
computation, performing a correction computation,
which is a multiplication process based on the modulus
n, and outputting a computation result of the correction
computation as an encryption process result obtained
when the modular exponentiation computation for the
modulus n is performed by using the first private key d as
an exponent for the first base a.

7. An encryption processing method used by a computer,

the encryption processing method comprising:

inputting a point A on a first elliptic curve, performing a
scalar multiplication of a point by using a specified
constant as a scalar value for the point A on the first
elliptic curve, and outputting a computation result as a
point B on a second elliptic curve;

inputting a first private key d, and computing a second
private key d' as a quotient obtained by dividing the first
private key d by the specified constant;

10

15

20

25

30

40

generating a correction key d" as a remainder obtained by
dividing the first private key d by the specified constant;
performing a first scalar multiplication of a point by using
the second private key d' as a scalar value for the point B
on the second elliptic curve, and outputting a computa-
tion result;
performing a second scalar multiplication of a point by
using the correction key d" as a scalar value for the point
A on the first elliptic curve, and outputting a computa-
tion result as a correction value; and
inputting the computation result of the first scalar multipli-
cation of a point, and the correction value, which is a
computation result of the second scalar multiplier of a
point, performing a correction computation, which is a
process for adding a point on an elliptic curve, and
outputting a computation result of the correction com-
putation as an encryption process result obtained when
the scalar multiplication of a point is performed by using
the first private key d as a scalar value for the point A on
the first elliptic curve.
8. The encryption processing method according to claim 6,
wherein
the specified constant has a value using one or more prime
numbers as a common factor.
9. The encryption processing method according to claim 8,
wherein
the specified constant has a value using a specified random
number as a common factor.
10. The encryption processing method according to claim
6, wherein
the second private key d' is computed and the correction
key d" is generated, preliminary to an encryption pro-
cess.

